

＂灵语＂网络英语培训班长期招生中！

真正全面掌握英语（非速成，非应试），实现精彩人生！研究生和零基础都能报名！

咨询 QQ：55634101（water 老师）

正规培训，可试听，非诚勿扰！晚上和周末上课，不影响工作！

YY 语音，现场授课， 1 对 1 与小班授课可选！
网校自编教材，针对性强！学员切勿在网上传播！
网校发展中，优秀学员从优聘用！

培训简介：

1，共＂ $1+5$＂个级别的分级培训课程，针对性强，学员也可以直接选择合适级别培训，见效快；
2，学费低，并按级别单独收费，培训不达标可不限次重新免费培训，直至达标；
3，一站式培训，从零基础到高级 \square 译课程，满足不同学员的培训需求；
4，全面提高英语，全面使用英语，拒绝或哑英语；
5，每周各级别培训时长平均为 6 个小时，一般为晩上 $8-10$ 点；
6，现场授课，互动性强；课后有学习任务，需满足达标要求；
7，每个级别培训按任务为单位累积学分，学分达标则该级别达标（ 80% 通过）；
8，对每个学员负责：试听前需要参加 1 对 1 面试，面试合格后可学习老师推荐的对应级别课程。

PS：一次性支付学费有困难的学员可以分多期支付。

预备级 （发音，口语）	培训时长：预计 2 个月
	小班费用：1500元 1 对1费用：3000元
	报名要求：发音较差的各类不同基础学员，打算学习美式发音和技巧且口语听力较差的学员
	培训内容：音标，单词拼读，基础口语短句学习，基础口语和朗读技巧，地道美语技巧，文章流利朗读与地道听力技巧
	培训目标：1，能够正确拼读英语单词；2，能够标准，流利的美音朗读英语中的各类句子，文章；3，为后续级别的培训打好口语和听力基础；4，掌握大概至少 200句的美语常用句。
一级课程 （零基础培训）	培训时长： 6 个月左右
	培训费用：2800元 1 对1费用：5600元
	报名要求：通过预备级课程或者测试的学员，零基础学员，大学 4 级以下或基础较差英语已经还给老师的学员
	培训内容：基础词汇，基础语法，生活美语句型，初中级文章阅读，朗读与听力训练，常用口语句型与对话实战，基础跨文化知识与交流
	培训目标：1，具备一定的阅读和听说能力；2，能通过词典流利朗读，阅读不太难的英语文章；3，具备基础的听说，跨文化，跨语言交际能力；4，良好的语法基础； 5，为更高级别学习打下坚实基础。
	培训时长：预计 12－14 个月
	培训费用：3800元 1 对1培训费用：7900元
	报名要求：通过预备级课程或者测试的学员；具有一级课程以上基础的学员（大学英语 $4, ~ 6$ 级或以上）；听说等实战能力较差的学员（建议大部分国内深受聋哑英语毒害的 10 年以上英语学习者选择此级别学习）；

二级课程 （初中级培训）	培训目标： 1，具有一定的原版书阅读和英语写作能力，能胜任一些要求不太高的工作； 2，具备流利的国内外生活交流和听说能力； 3，具有一定的口笔译基础能力，同时能够胜任一些基础口笔译工作； 4，至少 16000 以上的单词使用量（已大于托福词汇量）和熟练的高级语法知识，为更高级别学习打好基础。
三级课程 （高级培训）	培训时长：预计12－14 个月
	培训费用：4900元 1 对1培训费用：9900元
	报名要求：灵语网校二级课程达标或具有同等级的英语使用能力与基本功
	培训目标： 1，流利阅读各类型原版书，具有较高的阅读和听说能力； 2，能够胜任对英语要求较高的涉英类工作； 3，具有中高级口笔译能力并能胜任相应的工作； 4，具有合格的英语思维能力和跨文化交际能力，实现英语自由使用和交流； 5，具备 3 万左右的词汇量，为更高级别培训打下基础。
四级课程 （母语培训）	培训时长：预计14－16个月
	培训费用：7400元 1 对 1 培训费用： 1.5 万
	报名要求：良好的口语表达和阅读能力，同时具备至少 2.5 万的基础词汇量；合格的中英双语口笔译转换能力；具有一定的英语思维和逻辑表达能力；建议为灵语网校 3 级班达标学员报名。
	培训目标： 1，英语能力超过绝大部分母语为英语的美国本科生； 2，能胜任要求很高的涉英类工作和要求较高的笔译类工作； 3，扎实的中英双母语能力，中文母语水平得到质的提高； 4，较高的中英双母语转换能力和高级跨文化交际与翻译能力； 5，为同传培训打下非常好的坚实基础。
五级课程 （同声传译）	培训时长：预计 20 个月
	培训费用： 1.7 万元 1 对 1 培训费用： 3.6 万元
	报名要求：扎实的中英双母语技能；英语基础词汇量4万以上；有志于往同传方向发展并能坚持不懈；建议基础至少为灵语网校 4 级课程培训毕业的学员。
	培训目标： 具有胜任中高级别同传会议的能力；

PS：一次性支付学费有困难的学员可以分多期支付。

> 以上培训时长均以上班族学习模式作为标准而衡量。

报名方式：QQ：55634101（water 老师）

Water 老师简介：男， 33 岁，热爱语言及语言教学，普通话和英文发音标准。曾在北京邮电大学攻读电子工程专业，后对成为电子男无爱，专攻英语。毕业后，从事英语培训多年，并分别在一些知名英语培训机构做过培训师，多年研究英语教学法，实践经验丰富，讲究＂对症下药＂。后因和培训机构的高管在教育理念上的本质不同而分道扬镀。现单飞创业，并兼职中英同声传译。已经带过很多零基础，大学生，研究生，英语专业学生以及各类白领在职和出国人员，教学经验丰富。

更多国外英语原版书资源下载，请加 QQ 群：14097408

DK

Penguin Random House

DK LONDON

Project editor Lizzie Davey Senior art editor Mabel Chan

Editors

Ann Baggaley, Vanessa Daubney, Sarah Macleod, Catherine Saunders, Rona Skene, Sarah Tomley

Designers

Laura Brim, Alison Gardner, Mik Gates, Tessa Jordens, Steve Woosnam-Savage

Managing editor Paula Regan Managing art editor Owen Peyton Jones Jacket design development manager Sophia MTT Producer, pre-production Nikoleta Parasaki Producer Mary Slater
Publisher Andrew Macintyre
Associate publishing director Liz Wheeler
Art director Karen Self
Publishing director Jonathan Metcalf

Consultants

Alexandra Black, Kim Bryan, Giles Chapman, Sheila Dickle, Robert Dinwiddie, Richard Gilbert, Sawako Irie, Philip Parker, Penny Preston, Carole Stott, Tony Streeter, Marcus Weeks, Philip Whiteman, Chris Woodford, John Woodward

DK DELHI
Project editor Rupa Rao Project art editor Mahipal Singh

Editors

Deeksha Saikia, Sonam Mathur, Agnibesh Das

Art editors

Amit Varma, Vikas Chauhan, Ranjita Bhattacharji
Senior DTP designers Shanker Prasad, Harish Aggarwal DTP designers Nityanand Kumar, Rajesh Singh Adhikari Picture researcher Nishwan Rasool
Jacket designers Suhita Dharamjit, Dhirendra Singh Managing jackets editor Saloni Talwar
Managing editor Kingshuk Ghoshal
Managing art editor Govind Mittal Pre-production manager Balwant Singh Production manager Pankaj Sharma

First published in Great Britain in 2015 by Dorling Kindersley Limited, 80 Strand, London WC2R 0RL

Copyright © 2015 Dorling Kindersley Limited, London A Penguin Random House Company

10987654321
001 - 197156 - Oct/15
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner.

A CIP catalogue record for this book is available from the British Library.

ISBN 978-0-2411-8698-5
Printed and bound in Hong Kong by Hung Hing Printing Group
Discover more at
www.dk.com

CONTENTS

Science and technology

10 The Universe
12 The planets
14 The Moon
16 Space exploration
18 Stargazing
20 Northern skies
22 Southern skies
24 Physics
26 Electricity
28 Chemistry
30 The elements
32 Biology
34 The human body
36 Skeleton
38 Muscles
40 The brain
42 Computers
44 Inventions
46 Numbers
48 Geometry
50 Cars
52 Tractors
54 Trucks and diggers
56 Trains
58 Motorbikes
60 Aircraft
62 The story of flight
64 Bicycles

Nature

$\mathbf{6 8}$	Tree of life	118	Birds of prey
70	How life began	120	Feathers
$\mathbf{7 2}$	Fossils	122	Animal journeys
$\mathbf{7 4}$	Plant-eating dinosaurs	124	Rodents
$\mathbf{7 6}$	Meat-eating dinosaurs	126	Monkeys and apes
78	Prehistoric animals	128	Wild cats
80	Plants	130	Whales and dolphins
82	Flowers	132	Animal skeletons
84	Trees	134	Dogs
86	Mushrooms	136	Cats
88	Spiders and scorpions	138	Horses
90	Crustaceans	140	Farm animals
92	Insects	142	Forest
94	Butterflies and moths	144	Rainforest
96	Slugs and snails	146	Savanna
98	Fish	148	Deserts
100	Sharks	150	Polar habitats
102	Seashells	152	Ocean
104	Amphibians	154	Coral reef
106	Turtles and tortoises		
108	Lizards		
110	Snakes		
112	Crocodiles and alligators		
114	Eggs		

- - 雷

Geography

158 Earth

160 Volcanoes
162 Earthquakes
164 Shaping the land
166 Rocks and minerals
168 Gems
170 Water on Earth
172 Climate and weather
174 Extreme weather
176 Environment in danger
178 Our physical world
180 Our political world
182 Asia
184 North America
186 South America
188 Europe
190 Africa
192 Oceania
194 Antarctica
196 Flags
198 Where food comes from

Culture

202 World religions
204 World celebrations
206 World languages
208 The story of art
210 Musical instruments
212 How music works
214 Dance
216 Ballet
218 Great buildings
220 Great books
222 Great thinkers
224 Food around the world
226 Fruit
228 Vegetables
230 Cheese
232 Bread
234 Pasta
236 Fish for food
238 Meat
240 Men's fashion
242 Women's fashion

Whencl
Science and technology
dic 家

The Universe

The Universe is everything that exists - all of space, matter, energy, and time. It is a huge wide-open space with billions of galaxies, each containing billions of stars, and yet it is at least 99.99 per cent empty space. It has been expanding constantly since its beginning 13.8 billion years ago, when it exploded into life with the "Big Bang".

THE BIG BANG

Before the Big Bang, the entire
Universe was inside a bubble that
was smaller than a piece of dust. It was extremely hot and dense, and it suddenly exploded. In less than a second, the Universe became bigger than a galaxy. It carried on growing and cooling, and pure energy became matter. During the billions of years that followed, stars, planets, and galaxies formed to create the Universe as we know it.

GALAXIES

Galaxies are huge groups of stars, and they can be seen in the night sky using a telescope. They come in lots of different shapes, and most of them are thought to have a massive black hole at their centre.

NEBULAE

Nebulae are the "nurseries" of the Universe - they are huge clouds of gas and dust in which stars form. They may be trillions of kilometres wide and many have amazing shapes and colours.

ROSETTE NEBULA

EAGLE NEBULA

STARS

Stars are classified into different types depending on their temperature and brightness. Scientists use the HertzsprungRussell graph (shown below) to compare the size, temperature, and brightness of individual stars.

BLACK HOLES

A black hole is a region of space where matter has collapsed in on itself. This means there is nothing to be seen, but astronomers know black holes exist because they have such a strong gravitational pull that nothing can escape them - not even light.

ARTIST'S IDEA OF A BLACK HOLE

PLANETS

Planets are large spherical objects that orbit a star. In our Solar System, there are eight planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. Planets that occur outside our Solar System are known as exoplanets.

DWARF

PLANETS

Large planets have enough self-gravity to make them form into a round shape as they move through space. Smaller planets that cannot do this, but do orbit the Sun, are called "dwarf planets". Pluto is one of the largest dwarf planets in our solar system.

PLUTO

MOONS

A moon is a rocky body
that orbits a planet Some planets have many moons but Earth has only one. Moons are also known as natural satellites.

COMETS

Comets are small, icy worlds that orbit the Sun. They are made of frozen gases, rock, and dust. As they orbit the Sun, jets of gas and dust vaporize behind them to create long "tails" visible in space.

ASTEROIDS

Asteroids are small rocky bodies that orbit the Sun. There are millions of them in space, and they are mainly made of materials that were left over from the formation of planets.

THE SUN

The Sun is the hottest and largest object in our Solar System. Its fiery surface bathes the planets around it in light, and its gravity shapes their orbits. The Sun is now about halfway through its life. In about 5 billion years it will turn into a red giant, before puffing its outer layers into space, leaving behind only a ghostly cloud called a planetary nebula.

THE SUN IS SO HUGE THAT EARTH COULD FIT INSIDE IT ONE MILLION TIMES

MERCURY

Mercury is the nearest planet to the Sun and the smallest in the Solar System - it is about as wide as the Atlantic Ocean Mercury is a rocky world that has no atmosphere or water.

The planets

Around 4.6 billion years ago, a great cloud of dust and gas formed into the Sun. The parts that were not used began to form into clumps, which grew into planets orbiting the Sun. The four planets closest to the Sun formed from rock and metal. The four bigger outer planets formed from gases.

BRAHMS CRATER Mercury is covered in craters made by debris crashing into its surface.

MERCURY

ROCKY PLANET DISTANCE FROM THE SUN: 69.8 million km (43.3 million miles) DIAMETER: $4,879 \mathrm{~km}$ (3,030 miles)
TIME TAKEN TO ORBIT THE SUN: 87.97 Earth days NUMBER OF MOONS: 0

VENUS

Venus is the second planet from the Sun. It is about the same size as Earth and made from similar materials, but its atmosphere is made of carbon dioxide - the gas that we breathe out.

MAAT MONS Venus has more than 1,600 volcanoes, the highest of which is Maat Mons.

VENUS
ROCKY PLANET
DISTANCE FROM THE SUN: 108.9 million km (67.6 million miles) DIAMETER: $12,104 \mathrm{~km}$ (7,520 miles)
TIME TAKEN TO ORBIT THE SUN: 224.7 Earth days NUMBER OF MOONS: 0

JUPITER

Jupiter is the largest planet in the Solar System it could hold around 1,300 Earths. It is a giant ball of gas ringed by colourful bands of chemical gases that race around it as fierce winds.

GREAT RED SPOT This is a giant storm several times bigger than Earth, which has been raging for 300 years.

JUPITER

GAS GIANT
DISTANCE FROM THE SUN 816 million km (507 million miles) DIAMETER: $142,984 \mathrm{~km}$ (88,845 miles)
TIME TAKEN TO ORBIT THE SUN: 11.86 Earth years NUMBER OF MOONS: 67

SATURN

The second-largest planet in the Solar System, Saturn is not dense - it would float in a planetary-sized bathtub. It is surrounded by a system of rings that extend thousands of kilometres from the planet but are only $9 \mathrm{~m}(30 \mathrm{ft})$ thick.

SATURN

GAS GIANT

DISTANCE FROM
THE SUN: 1.5 billion km
932 million miles)
DIAMETER: 120,536 km
4,90 miles)
TIME TAKEN TO ORBIT THE SUN: 29.46 Earth years NUMBER OF MOONS: 62+

DISTANCE FROM THE SUN

The distances between the planets are huge, becoming bigger as we move out through the Solar System. If the Sun were the size of a grapefruit, Neptune would be 14.5 km (9 miles) away.

ORBITS

All of the planets orbit the Sun anticlockwise, in an elliptical, or oval pattern. This means they are closer to the Sun at some points in their orbits than others. They are trapped by the Sun's gravity and will stay in the same plane of orbit for ever.

PLANET SIZES

The four rocky planets nearest to the Sun are much smaller
than the gas giants. The Sun dwarfs them all, but is itself
much smaller than other stars in the Universe.

EARTH

Earth moves around the Sun at 30 km per second (18.6 miles per second) and takes 365 days to orbit it completely. It is the only planet known to have life on it.

HIMALAYAS
This mountain range was formed on Earth around 70 million years ago.

EARTH

ROCKY PLANET
DISTANCE FROM THE SUN: 152.6
million km 194.5 million miles) DIAMETER: 12.756 km (7.926 miles) TIME TAKEN TO ORBIT THE SUN: 365.26 Earth days NUMBER OF MOONS:

MARS

The planet Mars is red, because its surface is covered in iron-rich dust and rock. It is about half the size of Earth and has both the highest mountain and the deepest valley of any planet in the Solar System.

OLYMPUS MONS
This mountain on Mars is about three times as tall as Earth's Mount Everest. It is also volcanic.

URANUS

Methane in Uranus's atmosphere gives it a rich blue colour. This planet is often called the "ice giant" because 80 per cent of it is made up of frozen methane, water, and ammonia.

RINGS
Uranus has very faint rings compared to the other gas giants

NEPTUNE

Neptune is the furthest planet from the Sun, so it gets little sunlight to warm its atmosphere. Its vivid blue colour is due to methane and an unknown compound. Neptune has the fastest winds in the Solar System.

GREAT DARK SPOT
This storm, which has now dispersed, was large enough to contain Earth, and moved at $1,200 \mathrm{~km} / \mathrm{h}(750 \mathrm{mph})$.

NEPTUNE

GAS GIANT
DISTANCE FROM THE SUN:
4.5 billion km (2.8 billion miles) DIAMETER: $49,528 \mathrm{~km}$ (30,775 miles)
TIME TAKEN TO ORBIT
THE SUN: 168.4 Earth years
NUMBER OF MOONS: 14

The Moon

Always in orbit around Earth, the Moon is known as Earth's satellite. It provides Earth with light during the night, though it has no light of its own - it merely reflects the Sun's light, like a mirror. It is the closest object to Earth in space, and we can see its cratered surface even with the naked eye.

HOW THE MOON FORMED

There are many theories about how the Moon came into existence. Scientists think the most likely explanation is that something collided with Earth, sending debris into space that eventually formed the Moon.

IMPACT
A giant astronomical object hit the primitive molten Earth. The object was absorbed, but debris shot into space.

MOON FORMATION
Earth's gravity pulled the debris into orbit, and the fragments collided and clumped together, forming the Moon.

INTERNAL STR Moon is made up of several layers: it has a crust, mantle, and a solid inner core surrounded by a hot and fluid outer core. There are regular "moonquakes", which last up to ten minutes.

ORBITING EARTH

The Moon takes 27.3 days to orbit Earth, and the same amount of time to spin on its axis. We see some, all, or none of the Moon, depending on how much of its sunlit side faces Earth.

Moon orbits Earth
in 27.3 Earth days

CRATERS

The Moon is rocky and pockmarked with craters formed by asteroids crashing into its surface billions of years ago. The biggest craters are called "maria", or seas. They are very flat because they were filled with volcanic lava that welled up from inside the Moon and then solidified. In this Moon map, the near side is on the left and the far side is on the right.

FAR SIDE AND NEAR SIDE

NEAR SIDE

The near side is divided into two areas: the Lunar Highlands and maria.

HOW CRATERS FORM

When the Moon was young it was bombarded by asteroids - rocky pieces left over from the planet-making process. They blasted away the Moon's surface, forming craters, circular hollows about 10-15 times the size of the impacting asteroid.

INCOMING
SPACE R here is no protect the to om flying objects.

PHASES OF THE MOON

The Moon seems to get larger and smaller in the sky, but this illusion is caused by the fact that we can only see the face of the Moon that faces Earth. One half of the Moon is always bathed in sunlight, but most of the time only part of the sunlit area is visible from Earth.

WAXING CRESCENT Only a thin sliver of the sunlit part of the Moon is seen from Earth.

FIRST QUARTER The sunlit portion increases to show half of the Moon's hemisphere lit up.

WAXING GIBBOUS The sunlit part increases - now more than half of the Moon is visible in the sky.

FULL MOON A full side of the Moon is now visible. This is halfway through the lunar month.

WE ALWAYS SEE THE SAME FACE OF THE MOON FROM EARTH - IT IS KNOWN AS THE "NEAR SIDE" OF THE MOON

TRUE OR FALSE?

People have had theories about the Moon since they first looked up at the skies in ancient times. Modern science has helped us work out which Moon myths are true and which are false.

FULL MOON CAUSES LUNACY Research by scientists has proved here is no link between madness and the full moon.

MOON AFFECTS THE MOON AFFEC
The Moon's gravity does affect The Moon's gravity does affect
the tides of waters on Earth.

ALIENS INHABIT THE MOON Samples of the Moon taken by astronauts show no trace of other life, past or present.

YOU WEIGH LESS ON THE MOON "Weight" depends on the pull between two gravitational forces The Moon's gravity is less than Earth's, so you would weigh less

the moon is drifting AWAY FROM EARTH The Moon is moving away from us by 3.8 cm (1.5 in) per year.

THE MOON HAS A DARK SIDE The Moon spins on its axis, so every part of it is exposed to the Sun at some point during rotation.

The Lunar Highlands are hilly regions of craters

MEN ON THE MOON

In 1972 the crew of Apollo 17 landed on the Moon and stayed there for three days. They completed three successful excursions to examine craters and the Taurus Mountains.

ASTRONAUT EUGENE CERNAN ON

 THE LUNAR ROVING VEHICLE 1972
MOON MISSIONS

In the second half of the 20th century, there was a "Space Race" between the USA and the Soviet Union (USSR) to launch crafts, satellites, and people into space. In 1959 the USSR landed a space probe on the Moon, and in 1969 the USA landed people on the Moon. Since then, other countries have sent spacecraft to find out more about the Moon.

THE LAST TIME A MAN LANDED ON THE MOON WAS IN 1972
aurus M

The LUNAR ROVING VEHICLE, 1972

WANING CRESCENT This marks the near completion of the Moon's orbit around Earth.

NEW MOON The lit half of the Moon is completely hidden from Earth at this point.

Turning GibBOUS Turning away from Earth again, the lit-up section of the Moon begins to decrease.

LAST QUARTER Rising only around midnight, this half-lit Moon is brightest at dawn.

JOURNEY TO THE MOON

On 16 July 1969, three astronauts began a journey into space to land on the Moon. Their spacecraft was Apollo 11, which was launched into space by the three-stage Saturn V rocket. It delivered the astronauts on to the Moon in a Lunar Module

— 3. Combined Command and Service Module (CSM) separates from the rocket
2. The rocket's third stage and Apollo craft leave Earth's orbit and head towards the Moon

1. Saturn V rocket carrying Apollo craft 5. Apollo craft djusts its course

Command Module enters Earth's atmosphere
ast positions
docks with Lunar
Module. Third rocket
stage is now discarded
7. Third crew member continues to orbit the Moon in CSM
8. Ascent stage of Lunar Module takes astronauts
 -

Space exploration

At the start of the 20th century, rockets were invented that were powerful enough to blast away from Earth. By the century's end, thousands of spacecraft and hundreds of people had entered space. The spacecraft of the 21st century are beginning to explore the furthest reaches of our Solar System.

APOLLO MISSION BADGES

The US space programme is run by NASA (National Aeronautics and Space Administration), and it creates a mission patch, or badge, for every space mission. The badges include elements that represent different parts of the mission: its purpose, the name of the space vehicle, and its official number

MISSIONS TO SPACE

Space missions have landed people on the Moon and rovers on Mars. They have sampled the atmosphere of Jupiter and explored Saturn, Mercury, and even the Asteroid Belt. These missions help us understand the Solar System and our own planet.

MISSIONS TO ASTEROID BELT
NUMBER OF MISSIONS SENT: 10

KEY MISSIONS:

- DAWN: This spacecraft was launched in 2007 to study two bodies in the Asteroid Belt: Vesta and Ceres. It spent a year orbiting Vesta before moving on to Ceres.
- ROSETTA: A mission to a comet that photographed

Soviet cosmonaut
Alexei Leonov
becomes the first
person to perform
a spacewalk.

The USA's Neil
Armstrong and Buzz
Aldrin become the
first humans to walk
on the Moon.

Stargazing

Astronomy is the branch of science that is dedicated to studying stars, planets, and all the celestial bodies that surround Earth. It seeks to explain where we came from and the beginning of the Universe itself.

LOOKING AT THE SKY

Binoculars are a great way to start looking at the night sky, because they reveal up to ten times as much detail as the naked eye and are easy to use. Telescopes provide even greater detail.

NAKED-EYE VIEW OF THE ORION NEBULA

BINOCULAR VIEW OF THE ORION NEBULA

TELESCOPE VIEW OF THE ORION NEBULA

HOW OPTICAL

TELESCOPES WORK
Galileo Galilei made the first refracting telescope in 1609, and in the 1680s Isaac Newton invented the reflecting telescope, which uses mirrors to collect light and form it into an image

PICTURING SPACE

Astronomers learn about space using telescopes. These telescopes are designed to each pick up one particular type of electromagnetic radiation from space, and use that radiation to create an image. The pictures on the right here show the Crab Nebula viewed through different types of telescopes
infrared telescope These detect heat given off by objects. They ar where they are kept where they are kep
cold and far from Earth (so that they Earth so that the
do not pick up do not pick up
confusing heat data from objects on Earth

OPTICAL TELESCOPE These use lenses and
mirrors to capture light from distant objects. Reflecting and refracting telescopes are forms of optical telescopes.

ULTRAVIoLet

TELESCOPE
Hot and active objects in the cosmos give
off large amounts ultraviolet energy, so they are revealed in most detail with this kind of telescope.
 X-RAY TELESCOPE These telescopes capture high-energy rays from extremely hot objects. X-rays from celestial objects are partly blocked by the Earth's atmosphere so these telescopes are sent into space. They gather information from space objects as they orbit around Earth.

VIEW FROM

 EARTHIt is impossible to tell how large a star or planet is by looking at it from Earth, because some are huge but very far away. The Sun's diameter is 400 times that of the Moon, but it is also about 400 times further away.

SUN

MOON

MARS

POLARIS

METEOR

VENUS

SATURN

LIGHTS IN THE SKY

Sometimes we can see the interaction of light and magnetism in the skies through colourful light displays such as the northern lights.

NORTHERN LIGHTS
Also known as the aurora borealis, this light display is caused by particles from the Sun hitting Earth's magnetic field.

MOONDOG
A moondog appears as a halo around the Moon. It is caused by the refraction of moonlight on ice crystals in clouds.

SOUTHERN LIGHTS Also known as the aurora australis, this is similar to the northern lights but takes place above Earth's southern hemisphere

SUNDOG
Patches of sunlight appear at either side of the Sun. They are caused by sunlight refracting off ice crystals in clouds.

LIFE OUT THERE

The SETI (search for extraterrestrial intelligence) project was set up in 1960 to search for signs of life beyond Earth ts powerful radio telescopes scan the skies but have not picked up an artificial (non-natural) radio signal so far.

SETI TELESCOPES

THE CELESTIAL SPHERE

The celestial sphere is an imaginary sphere around Earth Any sky object can be mapped on to this sphere. Because Earth rotates, the celestial sphere appears to rotate.
Like Earth, it has north and south poles and is divided into hemispheres by an equator.

CONSTELLATIONS

Stargazers in ancient times named groups of stars after mythical beings and animals, These star patterns are called constellations and we still use them today to find the stars There are 88 constellations in total, and each one is only visible at certain times and from certain places.

URSA MAJOR
This constellation is also known as the Great Bear. It contains as areat Bear. It contains stars) known smaller group of or the Big Dipper

LINE OF SIGHT

Wherever you stand on Earth, you can see a portion of the celestial sphere. For example, the Plough seems to be a fixed shape, but it is actually formed by stars moving far out in space, all at different distances from the Earth.

- 1781

German-born astronomer, William Herschel discovers Uranus, a planet beyond Saturn, doubling the size of the known Solar System.

- 1933

American physicist Karl
Jansky records the first Jansky records the first radio-wave signals from space, which he concludes are from the Milky Way.

- 2006

The International
Astronomical Union
defines the properties
of a "planet" and in doing so demotes Pluto from a plane to a dwarf planet.

Ceres

James Webb Space Telescope

2018
The James Webb Space Telescope (JWST) is Telescope (JWST) is a space observatory scheduled to launch in October 2018. It is a uccessor to the Hubble Space Telescope and will offer the clearest images ever seen of objects in space.

Northern skies

If you live north of the equator, you live in the northern hemisphere. On a dark and cloudless night, you can see a mass of glittering stars. If you know what to look for, you can pick out individual stars, constellations, and other wonders of the night sky.

THE NAMES FOR MOST OF THE CONSTELLATIONS IN THE NORTHERN SKIES COME FROM THE ANCIENT GREEKS

KEY				
This map shows stars that are visible to the	Yellow star	0	Magnitude	- Magnitude brighter than 3.0
ked eye. Magnitude		-	Magnitu	- Mag
is - the lower the			brighter than 1.0	brighter than 4.0
number, the brighter the star.	White star Blue star	-	Magnitude	- Magnitude brighter than 5.0

THINGS TO LOOK FOR
Individual stars, star clusters, and whole galaxies can be seen with binoculars or a small telescope. Here are some key sights to look out for in the northern skies.

DUMBBELL NEBULA
This is a planetary nebula, which means it is made up of clouds of material shed by a star It is in the constellation of Vulpecula

LEO CONSTELLATION
The constellation Leo contains three spiral galaxies: M65, M66, and NGC 3628 They are known as the Leo Triple

STAR CLUSTER M13
This is the finest globular (globe-shaped) cluster in the northern skies. It lies in the

Hercules constellation.

PLEIADES STAR CLUSTER This cluster in Taurus is also known as the Seven Sisters, because seven of its blue stars are visible to the naked eye.

ORION NEBULA
This nebula marks the position of the "sword" below the "belt" of Orion in the Orion constellation.

HYADES STAR CLUSTER
This star cluster makes up the face of the bull in the constellation Taurus. The brightest star here is the giant star Aldebaran, which marks the eye of Taurus.

PERSEUS CONSTELLATION
This constellation is best known for its yearly Perseid meteor shower, which takes place in mid-August. It lies just below the "W" shape of the constellation of Cassiopeia.

M71 STAR CLUSTER
This loosely packed star cluster is on the edge of our galaxy. It sits in the Sagitta constellation

REFLECTION NEBULA This ghostly blue nebula is in the constellation of Cepheus. At its heart is a cluster of stars.

LYRA CONSTELLATION
The small constellation Lyra has one brilliant star, Vega. It is the fifth-brightest
of all the stars.

CRAB NEBULA
This is the remains of a supernova lan exploding star). It is found in Taurus, near the southerly "bull horn".

M15 STAR CLUSTER
This globular cluster is in Pegasus, northwest of Epsilon Pegasi, the northwest of Epsiton Pegasi, the

BEEHIVE CLUSTER
This swarm of stars in the constellation of Cancer is about three onstellation of Cancer is about three
times the diameter of the Moon.

Southern skies

If you live south of the equator, you live in the southern hemisphere. On a clear night, the southern skies give a fantastic view of the Milky Way, bright star clusters, constellations, colourful nebulae - and even whole galaxies.

- Magnitude brighter than 3.0 - Magnitude brighter than 4.0 Magnitude brighter than 5.0

THINGS TO LOOK FOR

The southern skies contain many night-sky objects that are not visible from the northern hemisphere, including the Magellanic clouds and the bright star cluster known as the Jewel Box.

NGC 3603 NEBULA
This giant nebula in the constellation Carina is composed of huge glowing clouds of gas. In its centre are thousands of hot, young stars.

OMEGA CENTAURI CLUSTER This is the largest and brightest globular cluster visible It is in the centre of the Centaurus constellation

KEY

This map shows stars that are visible to the marks how bright a star is - the lower the number, the brighter the star.

LARGE MAGELLANIC CLOUD This small galaxy orbits our own galaxy, the Milky Way. It sits in the constellation Dorado, though part of it is in the constellation Mensa.

THE JEWEL BOX CLUSTER
Shown at the bottom left here, this cluster includes a red supergiant and smaller blue stars. It is in the constellation
Crux. The bright star in the upper right here is called Mimosa.

ROSETTE NEBULA
This flower-shaped nebula is a star nursery - stars are being created within it - and there is a cluster of new stars at its centre. It can be seen with a small telescope in the constellation Monoceros.

M4 GLOBULAR CLUSTER
This cluster is around 12.2 billion years old. It is found near the bright star Antares, in the constellation Scorpius.

47 TUCANAE GLOBULAR CLUSTER
This huge star cluster is around 16,700 light years from Earth in the constellation of Tucana. It contains several million stars but looks like a single hazy star to the naked eye.

CORVUS CONSTELLATION
Corvus, the crow, is made up of four bright stars, shown in the lower-right half of this image. It sits close to the very bright double star known as Spica (top left).

Physics

How do forces, such as gravity and magnetism, affect matter - the stuff all around us? And how does energy make that possible? The answers to these questions are found in physics. Physicists try to unravel the rules of the Universe to explain why the world works as it does.

GRAVITY

Gravity is the force that keeps us held fast on the planet, even while Earth spins at up to $1,670 \mathrm{~km} / \mathrm{h}$ (1,037 mph). Gravity pulls together all matter, but larger things with more mass have more gravitational force.

GRAVITY KEEPS EARTH AND THE OTHER PLANETS ORBITING AROUND THE SUN

MASS AND WEIGHT

The mass of something is the amount of matter it contains, and mass always stays the same, wherever the object is. But weight changes depending on where an object is, because weight is determined by gravity.

Man of 75 kg (165 (b) mass, weighs 12.5 kg the Moon

FALLING APPLE

MAGNETISM

FORCE

A force is something that pushes or pulls objects - whenever something moves, it has been moved by a force. Forces can change the speed of an object, alter its direction, or change its shape.

CHANGING SPEED

CHANGING SPEED
The force of the golf club hittin the ball makes the ball move. The ball gains energy and takes off down the golf course.

The harder the ball is hit, the more force is used, and the
further it travels

Earth and apple pull together
Force of gravity makes apple fall

CHANGING SHAPE

A force may cause something to change shape if the force is strong enough and the atoms inside th

Bending a bar
rearranges the atoms

Magnetism is a powerful invisible force that is created by electric currents. Magnetic objects have the power to attract other magnetic objects or push them away, depending on how their ends (poles) are lined up.

FRICTION

This force occurs when one object is dragged over the surface of another object. The rougher a surface is, the more friction it produces. Even smooth surfaces have tiny bumps that will produce some friction.

LAWS OF MOTION

All motion is caused by forces pushing and pulling. The scientist Isaac Newton described three laws of motion. The first says that all things will stay still or move at a steady speed unless a force acts on them. The second says that when a force acts on something it makes it accelerate. The third says that when a force operates on something (action), there is always an opposing and equal force (reaction)

FIRST LAW Before take-off, the only force acting on a rocket is gravity.

The exhaust gas firing down (the action) makes the rocket shoot up (the reaction). The rocket does not push against the air moves up becaus exhaust blasting down

TYPES OF ENERGY

There are many different kinds of energy, and most of them can be converted into other forms. For example, when you burn coal it changes the chemical energy stored in the coal into heat energy

LIGHT ENERGY Energy carried in waves.

SOUND ENERGY Energy we can hear, made when things vibrate.

NUCLEAR ENERGY
Generated by atoms splitting apart or

KINETIC ENERGY The energy objects have because they are moving.

POTENTIAL ENERG Energy that is stored and yet to be released.

ELECTRICAL ENERGY The energy carried by electricity as it flows down a wire.

HEAT ENERGY Energy stored or jiggling around.

HEAT
Heat is a form of energy, so when you heat something, you are increasing its stored energy. Objects store heat by jostling molecules or atoms inside them. Even large, cold objects can have heat energy.

HEAT IS USUALLY ON THE
MOVE - IT TRAVELS ABOUT,
SO COLD THINGS GET HOT
AND HOT THINGS GET COLD

ICEBERGS
cebergs are freezing cold but they still have some heat energy.

ELECTROMAGNETIC SPECTRUM

The Sun's heat and light is carried to Earth by electromagnetic waves. These are just part of a spectrum that includes radio waves, microwaves and X-rays. All waves travel at the speed of light but they vary in wavelength, frequency, and energy.

INFRARED RAYS Infrared radiation light". It shows up on thermal (heatsensitive) cameras. GAMMA RAYS
These are made
when atoms split
apart in nuclear
explosions.

1 km	100 m
WAVELENGTH	

LIGHT AND COLOURS

The light from the Sun looks white, but it is actually made up of lots of different colours. If you shine light through a prism, the whole spectrum of colours appears.

SOUND

Sound is another form of energy that travels in waves. Louder sounds make bigger waves, while high-pitched sounds make waves that vibrate faster. The various noises we hear are produced by sound waves of different shapes and sizes.

TUNING FORK A tuning fork makes one simple, regular, up-and-down sound wave pattern called a "sine" wave. Each fork produces only one note.

TINY SCIENCE

Our whole planet and all its people are made of atoms. The nucleus of an atom consists of protons and neutrons, and these are made of even smaller things called quarks. It is unclear what those are made of, but some scientists think that they may be vibrations of matter or energy, which scientists refer to as "strings". This

GREAT PHYSICISTS

People have tried to explain our world and the Universe since ancient times. In the last 400 years, physicists have invented theories that underpin much of what we know.

O ISAAC NEWTON (1643-1727)
Newton discovered that sunlight contains all the colours of the rainbow. He also devised the laws of gravity and motion ERNEST RUTHERFORD (1871-1937)
Rutherford proved that the atom was not solid orbiting a nucleus.

ALBERT EINSTEIN (1879-1955)

Einstein discovered many things, but he is most famous for his theory of relativity.
(1918-88)
(1918-88)
Feynman is best known for introducing
the world to quantum physics.

Electricity

We use electricity to power all sorts of things, from factories and trains to the many small appliances in our homes. The energy it contains comes from charged electrons that whizz around inside every atom.

ELECTRICITY IN NATURE

Electricity is not only generated in power stations - it is also found
in nature, from high-energy lightning strikes to inside our own
bodies. Our brains use electric signals to tell our muscles to move.
 A bolt releases as much makes in one second

AURORA These lights in the sky are streams of electrically charged particles.

NERVOUS SYSTEMS Human nerves electric signals

ELECTRIC EEL This eel discharges electricity in water to kill fish for food.

ELECTRIC CURRENT

When electrons flow down wires, they carry energy from place to place. So in a torch, electrons march around the wire from the battery to the lamp, where their power lights up the bulb.

Electrons flow past atoms	Atoms stay fixed in the same place

CURRENT FLOWING
When the power is switched on, the electrons move
along in a line, forming an electric current.

NO CURRENT FLOWING
When the power is switched off, there's nothing to move the electrons in a line, so they just jig about randomly.

CIRCUITS

The path that electrons travel along is called a "circuit". A circuit carries power from a power source (such as a wall socket) to something that needs electricity to run (such as a lamp). There are two types of circuit.

SERIES CONNECTION All the power moves through each part of the circuit, in a line.

PARALLEL CONNECTION The power splits into two as it reaches two lamps wired like this.
-

SWITCHES

If you attach a wire to both ends of a battery, and connect a lightbulb to the wire at some point, the electricity would continually flow and always light the bulb. A switch is used to break the circuit, so the bulb can be switched on and off.

ELECTROMAGNETISM

When an electric current flows through a wire, it creates a magnetic field around it. The strength of the magnetic field can be increased by coiling the wire in loops, because that allows more current to flow through a smaller distance.

BATTERIES

Batteries make their own electricity by using chemicals. When you connect a battery, chemical reactions take place that generate electrons.

LIGHTNING BOLTS

ARE LARGE-SCALE
STATIC SHOCKS

CONDUCTORS

INSULATORS

AND INSULATORS

Electricity is a flow of electron so materials that do not allow the flow cannot pass along electricity. These are called "insulators". Materials that do allow the flow of electricity are called "conductors"

RUBBER

SILICON

WATER

CONDUGTORS

COPPER

POWER TO THE HOME

Electricity is produced for homes in several ways, such as burning coal or using nuclear power. The electricity is then fed though sub-stations to individual houses. Some houses also produce their own power through solar panels.

Fossil fuel Fossil fue
power statio $\begin{array}{r}\text { Fossil fuel } \\ \text { power station } \\ \text { Nuclear } \\ \text { Geothermal } \\ \text { power station } \\ \text { lusing ground } \\ \text { heat) }\end{array}$
Water from a dam runs
hydrough a turbine to produce

Water from a dam runs

Electric trains use power lines

Buildings can be fitted with solar panels to produce power

Skyscrapers need much more power than house

ELECTRICITY AT HOME

We use electricity at home from the moment we get up (perhaps switching on a light or using an electric toothbrush), to when we go to bed. Homes need energy for heat, light, cooking, and washing machines as well as lots of personal items, such as hairdryers and mobile phones,

VOLTAGE
Voltage is a kind of force that makes electricity move through a wire. The bigger the voltage, the more current will shoot through the wire. Bigger voltages and currents deliver more electrical power, but they are also more dangerous.

PYLONS
These hold up overhead lines that carry electricity across long distances. The largest ones use 400,000 -volt cables Cables on wooden poles use 400-11,000 volts.

ELECTRIC TRAIN CAbles Trains take power from cables above them. One train needs less than 1,000 volts, but the cables are about 25,000 volts. This means many trains can use the line at once.

ELECTRICITY AT Home Voltage in the home differs from country to country, but generally lies at 110-250 volts. Factories need higher voltages because they have bigger machines.

BATTERY CHARGERS A laptop or phone charger needs $10-20$ volts to charge its battery. Laptops need higher voltages than phones because they have bigger screens and circuits that use more energy.

TORCH BULBS
Bulbs for torches and lamps are rated by the voltage and current needed to operate them. The standard AA, C, and D batteries all deliver 1.5 volts each.

PIONEERS

Electricity has been around forever,
because it exists naturally in the world However, some people were important in finding out how to harness its power
O BENJAMIN FRANKLIN (1706-90)
Franklin discovered that lightning is electricity, and that there are positive and negative charges

- ALESSANDRO VOLTA (1745-1827)

A professor of experimental physics Vita invented the first battery, called the Voltaic Pile.

O GEORG SIMON OHM (1789-1854)
Ohm discovered electrical resistance. The unit of resistance - ohm - is named after him.

O MICHAEL FARADAY (1791-1867)
Faraday discovered that if you move a magnet near wire, the wire becomes electrified. This is known as electromagnetic induction
O THOMAS ALVA EDISON (1847-1931)
Edison built the first electric power stations (phonograph), and movie camera.

O NIKOLA TESLA

(1856-1943)
Tesla discovered alternating currents, hydroelectric power radio waves, and radar. He invented transformers, a longdistance power system, electri motors, and X-ray machines.

NIKOLA TESLA

Chemistry

Chemists dig deep. They begin with the elements that make up all matter, and break them down into tiny atoms. They analyse what the atoms are, how they change state, and how they react when they mix.

INSIDE AN ATOM

Even though an atom is tiny,
it has even smaller things inside it - protons, neutrons, and electrons Protons and neutrons combine to form the atom's nucleus. Electrons fill the space around the nucleus.

CHEMISTRY IN ACTION

In ancient times, people used the natural materials around them, such as wood and stone, to make objects. Since then, scientists have discovered thousands of chemicals, some of which can be used to make new materials.

HOUSEHOLD CHEMICALS We use lots of chemicals in our homes, from the paint on our walls to the shampoo

BIOCHEMISTRY This looks at chemical processes inside living things or affecting them

ORGANIC CHEMISTRY This branch of chemistry focuses on carbon-based compounds and their uses.

STRUCTURE OF AN ATOM

Some particles in the atom are electrically
charged. The protons in the nucleus are positively charged and the orbiting electrons are negatively charged. There are always equal numbers of protons and electrons.

CARBON ATOM
The number of protons inside an atom determines what kind of atom it is. For example, a carbon atom has six electrons and six protons.

MOLECULES

Atoms of the same sort or different atoms can clump together to make molecules. A molecule can be as simple as just two atoms, as in hydrogen, or lines of thousands of atoms, as in some plastics.

STATES OF MATTER

All matter can change state. Water, for instance, can be a liquid, gas (steam), or solid (ice). Its state depends upon the way its atoms move around. As a solid, its atoms lock tightly together. As a liquid, they move further apart, and as a gas they move freely and independently.

MIXTURES

A mixture is
made when two
substances are combined, but no chemical reaction takes place. The ingredients are said to combine, rather than to bond.

SEPARATING MIXTURES

The substances in a mixture are not bonded together, so they can be separated. However, the more similar the properties of each substance are to one another, the harder it is to separate them.

Shaken together these substances mix. Left for a time, they separate back out.

MAGNETIZING
Magnetic substances will be drawn to stick to the magnet.

COARSE MIXTURE
An unevenly distributed mixture of different type
of larger particles.

CHROMATOGRAPHY Using a substance that attracts some particles more than others separates the two

ACIDS AND BASES
All liquids and solutions fall somewhere on the acids and bases scale, which is measured as a pH level. Those at each end of the scale are very reactive and dangerous.

WHAT IS A CHEMICAL

 REACTION?In the natural world, atoms and molecules are constantly joining together or breaking down to form new things. This can also be done in a laboratory. When scientists add one ingredient (called a reactant) to another, they create a chemical reaction. The molecules of the reactants split apart, rearrange themselves, and then form a new bond - the product of the reaction.

REACTANT 1

REACTANT 2

REACTION

PRODUCT

TYPES OF CHEMICAL

 REACTIONAlthough the product of a chemical reaction is very different from the reactants, none of the atoms are destroyed - there are the same number before as after the reaction. There are three types of chemical reaction.
 One reactant breaks apart into two products to make two compounds.

GRAPHITE CAN BE CHANGED INTO DIAMOND THROUGH HEAT AND PRESSURE

 places with those of another to make a new compound

COMBUSTION

Car engines and power stations are powered by a chemical reaction called combustion (burning). The reactants are fuel, such as petrol or coal, and oxygen from the air. Adding heat Isetting fire to the fuel) starts the reaction.

MATERIALS

The materials we use for making everyday objects need to have the right properties for the object's function. For example, wood is robust and good for building a chair but would be a poor choice for a

GREAT CHEMISTS

The discoveries of great chemists have contributed to human progress in everything from medicine to space travel.

ROBERT BOYLE (1627-91)

The author of The Sceptical Chymist was the first to develop rigorous scientific techniques for his experiments in the field of chemistry.

O ANTOINE LAVOISIER (1743-94)
The first chemist to demonstrate that water is made of oxygen and hydrogen, and to show that oxygen is needed for combustion.
MARIE CURIE (1867-1934) Twice winner of the Nobel prize, Curie discovered radium
O LINUS PAULING (1901-94) American scientist who worked out how molecules bond together.

O DOROTHY HODGKIN

 (1910-94)A pioneer in X -ray techniques A pioneer in X -ray techniques
who discovered the atomic

SWIRLS AND FUMES
the product of a chemical reaction can be very different from the original reactants. This mix reacts quickly, swirling and giving off fumes.

who discovered the aton
structure of penicillin.
structure of penicillin.

GLASS Transparent and can be made into any shape. Breaks easily if thin.

SYNTHETIC FIBRE Plastic-based fibres are strong and waterproof.

KEVLAR® High-strength material that withstands high impact and extremes of

READING THE TABLE
The table has horizontal rows called periods and vertical columns called groups. Atoms get bigger and heavier towards the bottom of each group because they have more protons and more electrons in the shells (rings) around them. As you move along the rows from left to right, atoms gain protons and electrons, and become more tightly packed.

PERIODIC TABLE KEY - Alkali metals sually in compounds. Alkaline earth metals ery reactive metals no found as pure elements.
Transition metals Malleable, ductile metals
 Noble Noble gases
Stable gases that do not $\begin{aligned} & \text { Non-metals } \\ & \text { Poor solid conductors }\end{aligned}$ Stable gases that do not $\begin{aligned} & \text { Poor solid conductors, } \\ & \text { react naturally. } \\ & \text { brittle, with no metallic }\end{aligned}$ - Other metals

Other metals
Malleable, ductile, solid, Malleable, ductile, solid,
dense metals.

Unknown

Newly discovered
synthetic element.

Xe

THE RUSSIAN SCIENTIST DMITRI MENDELEEV INVENTED THE PERIODIC TABLE IN 1869

Biology

Biology is the science of all life, from microscopic bacteria that cannot be seen with the naked eye to enormous animals such as elephants and whales. It includes their form and function, origin and growth, and evolution and distribution.

NEEDED FOR LIFE

All life forms need the same essentials
to survive. Few forms of life can exist
without most of these basic necessities.

WATER All living things cells, which need water to exist - most life forms are mainly made up of water.

WHAT IS A CELL?

Cells are the building blocks of life. The cells of all living things except archaea and bacteria contain a nucleus, mitochondria, and other organelles. Cells can be specialized to perform different functions - for example, we have nerve, muscle, and bone cells. The human body has around 75 trillion cells, whereas less complex organisms may have only one.

MITOCHONDRION
This is the part of the cell that releases energy from food molecules within the body.

Vacuoles Vacuoles
store nutrien
or waste

Ribosomes are the protein builders of the cell

CHROMOSOMES

Within the nucleus of each cell there are chromosomes that carry DNA. DNA contains genes that determine how an organism looks and functions. Humans have 46 chromosomes (23 pairs).

Each gene is Each gene is
a section of the

DNA is a arranged in a double-helix shape

GENES

Our genes are inherited from our parents - half from mum and half from dad - and they dictate things like eye colour. Each person has two versions of each gene, called alleles, which together make up their genotype. One allele is often dominant over another, which means that that feature is the one seen in the person.

KEY

b The recessive allele. A child must
have two b alleles to have blue eyes.

- B The dominant allele - a child with one or two B alleles will have brown eyes.

BLUE-EYED
FATHER
 MOTHER
(b) B (b) (b) b b b

Parents genes

Possible gene combination

Children's possible

GENETICS IN ACTION

The mother here has one recessive and one dominant allele. The father has two recessive alleles. This means it is equally likely that they have a brown-or blue-eyed child

All living things shared a common ancestor in the distant past. Over time, many organisms have evolved and become extinct. Today, there are six kingdoms of life - bacteria, archaea, and four eukaryotic groups - animals, fungi protists, and plants.

FOOD WEB

Plants use sunlight to create energy. Animals eat plants to get energy. Many animals are eaten in turn by other animals When an animal or plan dies, its remains are eaten by other animals or fungi. Its nutrients are returned to the soil where they are used by plants.

EVOLUTION

Individuals that are best suited to the environment in which they live are the ones most likely to survive and reproduce They then pass on the genes that favour their existence to their offspring. Over time, this leads to change. This process is known as evolution by natural selection.

ARCTIC CHAR

GREAT BIOLOGISTS

Biologists study living things and their
relationship to each other and the world. Their discoveries and inventions have changed the way we live.

ARISTOTLE (384-322 вCE)
This Ancient Greek philosopher was the first to classify the kingdom of life.

O CHARLES DARWIN (1809-82)
This British naturalist suggested the theory of evolution in his book On the Origin of Species.
O GREGOR MENDEL (1822-84)
An Austrian scientist and monk, Mendel showed how traits are inherited.

LOUIS PASTEUR (1822-95)

Pasteur proved that bacteria can spoil food and then went on to invent pasteurization - a method of killing bacteria in food such as milk and cheese.

LOUIS LEAKEY (1903-72)
A Kenyan scientist who found evidence
of early humans in Olduvai Gorge, Kenya, and suggested humans first evolved in Africa

ADAPTATION

Animals adapt to suit their environment, and birds' beaks, or bills, are a perfect example of this. The birds pictured here have all evolved from the same ancestor, but their bills have become perfectly adapted to help them catch and eat food in different habitats.

EXTINCTION

The dying out of a species is known as "extinction" Scientists believe that we are now undergoing the biggest wave of extinctions since the dinosaurs disappeared.

GEOLOGICAL EVENTS Meteor strikes and volcanic eruptions can cause extinctions. Dinosaurs are thought to have been wiped out by a meteor or volcanic activity.

HABITAT DESTRUCTION Habitat destruction and fragmentation has led to species such as the panda being in danger of extinction.

d
 $=$ baty
 $\underset{\substack{\text { The } \\ \text { bod }}}{ }$
 The human body is a complex machine，

> made up of tissues and organs．These work together through joined－up systems that communicate with each other through electrical messages，which travel to and from the brain．
 BODY MADE OF？ More than haf ofthe oroys weiph
is water The rest is made upof is water．The rest is mae up the
different kinds of tissue，from the soft tissue that lines our intestines
to the hard tissue that forms to the hard tissue that forms
our bones．Water and tissues themselves are made up of
around six elements，as shown in the diagram below．

Blood vessels carry blood
containing oxygen and
nutrients around the body

FRONT

Fibula

SYNOVIAL JOINTS
Synovial joints are the most common type of joints.
There are six types of synovial joints, each allowing
a different range of movement, depending on how
the bones fit together.

The brain

The brain is the most complex organ in the body. Safely encased inside the skull, it controls our actions and all the body functions that keep us alive. It also monitors the world around us, stores our memories, and enables us to plan for the future.

NERVOUS SYSTEM

The brain is linked to the rest of the body through a network of nerves, known as the nervous system. This network acts as a kind of information highway, carrying messages between the brain and the body Part of the system, known as the autonomic nervous system (ANS), makes sure all our "automatic" body

BRAIN JOBS

The brain allows you to sense, think, learn, remember, and much more. Different areas of the brain have different jobs.

[SENSES

There are five main sense areas in the brain. They process the signals from the sense organs-eyes ears, skin,
and nose.

- MEMORIES The hippocampus is where your brain makes and
memories.

LANGUAGE
One part of the brain known as Broca's area controls your speech. Two other parts, known as Geschwind's territory and Wernicke's area, help you to learn and understand language. MOVEMENT
This part of the brain is called the motor cortex and it sends signals to your muscles to tell them to move your body.

- thoughts

The large area known as the prefrontal cortex processes your thoughts. It turns them into plans, judgements, and ideas, and also helps you to understand other people's feelings.

HOW NERVES SEND MESSAGES

The nervous system is made up of billions of cells called neurons. These odd-looking cells have branches called axons that carry electric messages, or impulses, down to lots of smaller branches. These pass the message on to another neuron.

NEURON

Signal travels onwards towards another neuron

Signal passes from one neur to another

- Axon of neuron sending signal

TRANSMITTING MESSAGES
There is a gap between neurons called the synapse. The electrical impulses convert to a chemical form to travel across the gap.

BRAIN AREAS

The human brain has many different parts, but it can be divided into three main areas. The large cerebrum deals with thoughts, language, and behaviour. The limbic system processes emotions, and the cerebellum coordinates movement

The human brain has lots of wrinkles, which hold all its information. If the surface of your brain was unfolded it would be more than twice as big.

EMOTIONS

The brain processes our eelings. As it does so signals move through the body so that those feelings become visible to other people. There are six primary emotions and they all show on the face in a particular way. These facial expressions are the same in everyone a smile means the same thing whether you live in the Sahara desert or New York City

Computers

Computers are electronic machines that we can use to do many different things, just by changing the programs they are running. Today, computers have become indispensable because they are used to run our world - from global air traffic control to personal mobile phones.
c. 2000 BCE
The Chinese
invent the
abacus, the
world's first
counting
machine.

2000 BCE

COMPUTER HISTORY

The first calculating machines were invented to add numbers, which was important for buying and selling goods. They were continually improved, until we arrived at the modern computer.

1642 Blaise Pascal invents the Pascaline, a mechanical and automatic calculator.

Pascaline

HOW COMPUTERS WORK

Computers work by processing information: they take in information (data), store it (memory), process it in whichever way they have been programmed to do, then display the result (output).

\section*{| ${ }^{2}$ | | | | |
| :--- | :--- | :--- | :--- | :--- |}

\qquad
INPUT

SHRINKING

SIZES

The 1949 EDSAC computer took up a whole room and was arranged over 12 racks. Today's personal computers (PCs) perform calculations millions of times faster, but they can sit easily on someone's desk or lap.

SOFTWARE

Software is the name for ready-made programs we use to make one computer do many things. Software allows us to write, edit photos, use the internet, and so on, without having to program a computer ourselves.

NETWORKS

A network is a number of things connected in some way.
There are three main forms of computer networks, which
can connect computers and peripherals, such as printers.

BUS NETWORK This simple network uses one cable to connect all computer acts as the server.

STAR NETWORK
Here, each computer is connected to a central hub, using an individual cable for each computer. If one device fails, the others are not affected.

SUPERCOMPUTERS

Some scientific problems are so vast that they need huge amounts of processing power, delivered by "supercomputers". Some of these have tens of thousands of processors all working on one thing at the same time.

THE INTERNET

The Internet is a computer network that stretches around the world, linking
most computers on the most computers on the planet. Every computer IP address, so that digital things (such as email) can be sent to
from it.

1. Sender's
computer rreaks
photo into many
tiny digital pieces,

WHAT WE DO ONLINE?

 We now use theInternet for all sorts of activities where we want to connect with someone else either for fun or

COMPUTERS
 \section*{EVERYWHERE}

Computers are used in all sorts of devices, from personal music players and phones to microwave ovens and surveillance cameras.

Inventions

The work of inventors is all around you. Not just your phone and games console the chair you are sitting on, the car outside, even the light bulb above your head was invented by somebody. Some early inventions, like the wheel, will be used for ever. Others, such as the spear, have been replaced by newer, more effective models.

TELEPHONE
Early in the 19th century people found they could send signals through wires, but it was not until the invention of the telephone by Alexander Graham Bell in 1876 that voices could be sent along wires at long distance. This invention revolutionized the ways in which we

EDISON'S LAMP

LIGHT BULB

Scientists across the world experimented with lamps and light in the 19th century, but it was Thomas Edison in the USA, who created a light bulb that could last for more than 1,200 hours. Light bulbs have since been redesigned to use less energy.

PLASTIC

British inventor Alexander Parkes was trying to create a synthetic material that could be easily shaped when hot, but would be hard when cold. In 1862 he exhibited Parkesine, the world's first type of plastic

-1878 1886

CAR

Karl Benz of Germany built the first stationary petrol engine in 1879, and decided to work out how to use this in a "horseless carriage". By 1885 he had invented a two-seater vehicle with a compact, single-cylinder engine. The patent for this car, filed in 1886, is seen as the "birth certificate" of the motor car.

REFRIGERATOR

Until 1834 people kept food cool in insulated boxes filled with ice, which was delivered to their door. Then Jacob Perkins of Philadelphia, USA invented a water-freezing machine that led to the first domestic fridge.

CABINET WIRELESS
RADIO, 1932

RADIO

COMMUNICATION
In 1895 Italian inventor Guglielmo Marconi managed to send Morse code signals using radio waves instead of wires. The instrument he used became known as the radio.

1759

Numbers

Numbers are symbols that are used to represent a quantity of something．They have been used for thousands of years to answer the question＂how many？＂．At first people only used whole numbers（integers），but then came the idea of fractions and negative numbers．

NUMBER SYMBOLS										
Modern Hindu－Arabic	1	2	3	4	5	6	7	8	9	10
Mayan	－	－•	－••	－•＊＊	－	－	\bullet	－0．	－0．0	
Ancient	－	二	三	四	五	六	七	八	九	＋
Ancient	I	II	III	IV	V	VI	VII	VIII	IX	X
Ancient Egypt	I	｜｜	III	＂	＂II	III	＂III	IIII	＂11	\cap
Babylonian	Y	Tr	T1	\％	\％	市	产	雨	平	＜

NUMBER SYMBOLS

Arabic system is the simplest and most useful for mathematical calculations．

NUMBER SEQUENCES

A sequence of numbers is a series of numbers that follow Each number in one another according to a pattern，such as each number being two higher than the previous term．

Each number in this sequence is the sum of the two numbers before it

SEQUENCE
This is a very
famous number
sequence that
appears in
lots of natural
formations
such as flower
petals and
spiral galaxies．
$\quad 1+\mathbf{1}$
\quad Sequence
starts with 1

POSITIVE AND NEGATIVE NUMBERS

Positive numbers count up from zero; negative numbers count down from zero
This means they are less than zero. If you had $£ 5$ in your bank account and withdrew $£ 10$ from a cash machine, your bank balance would show as $-£ 5$.

$$
\begin{array}{llllllllllllllllllllll}
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

DECIMALS

Decimals are a way of expressing parts of things or
numbers as tenths or hundredths of a whole number

The number to the left

The numbers to the right of the decimal point is of the decimal point are parts of a number; here 5 tenths and 6 hundredths

The decimal
 1,234.56

PERCENTAGES
Percentages re e another way 100% \%
Percentages are another way of talking about parts of an object or number. Here, the whole (such as the whole of a school class) is said to be 100 per cent, or 100%. Half th class is therefore half that: 50%. The whole can be broken into very fin

50\%

In a class of 100 ch $50 \%=50$ children

 andion $=100$ children

100\%

PERCENTAGE Лै

DECIMALS
 RACTIONS, AND PERCENTAGES ARE DIFFERENT WAYS OF SAYING THE SAME THING

 COMMON NUMBERSThe table below shows some commonly used fractions, decimals, and percentages

Decimal	Fraction	$\%$	Decimal	Fraction	$\%$
0.1	$1 / 10$	10%	0.625	$5 / 8$	$\mathbf{6 2 . 5 \%}$
0.125	$1 / 8$	12.5%	0.666	$2 / 3$	$\mathbf{6 6 . 7 \%}$
0.25	$1 / 4$	25%	0.7	$7 / 10$	70%
0.333	$1 / 3$	33.3%	0.75	$3 / 4$	75%
0.4	$2 / 5$	40%	0.8	$4 / 5$	$\mathbf{8 0 \%}$
0.5	$1 / 2$	50%	1	1	100%

PRIME NUMBERS

These are special numbers that cannot be divided by any other number except themselves and 1. For example, 13 cannot be divided by any number other than 13 or 1 . Numbers that can be divided by others are known as "composite numbers"

17

PRIME NUMBER A green box on the table indicates that prime number.

COMPOSITE NUMBER A blue box indicate that a number is a composite numbe The numbers it divisible by are given as smaller numbers below example above).

12345678910
11121314151617181920
21222324252627282930 31323334353637383940 41424344454647484950 51525354555657585960 61626364656667686970 71727374757677787980 81828384858687888990 919293949596979899100

ALGEBRA

When mathematicians are trying to work out a missing number in an equation, they use a symbol to represent the missing number. In this example, we know that 2 plus something (here called "b") equals 8.

VARIABLE

unknown number or
quantity represented by a letter

For this group of people, the mean height is

$(130+140+150+160+160) \div 5=148 \mathrm{~cm}$

AVERAGES

An average is the middle value of a set of data. The most common type of average is the mean which is found by adding up a set of numbers then dividing the total by the amount of numbers in the set

Geometry

Geometry is the part of maths that looks at lines, angles, shapes, and space. It is used to work out distances, areas, and volumes in a wide range of tasks from building houses to astronomy.

COMMON ANGLES

If you draw a line out from a centre point and move it around 360°, it will return to the starting point. So the angles surrounding a point make up a whole turn, and they add up to 360° The angles on a straight line make up a half turn and add up to 180°.

TRIANGLES

Shapes made of straight lines are called polygons. Triangles are the simplest polygons, because they are made from three straight lines joined at three corners. All three angles inside a triangle always add up to 180°. There are several different types of triangles.

EQUILATERAL TRIANGLE This triangle has three equal sides and three equal angles (each 60°).

ISOSCELES TRIANGLE This triangle has two equal sides. The angles opposite these sides are equal.

RHOMBUS This quadrilateral has four sides of equal length, and two pairs of opposite angles that are also equal.

PARALLELOGRAM This has two pairs of equal-length sides and two pairs of equal angles. The opposite sides are parallel.

OBTUSE TRIANGLE This triangle has one angle that is greater than 90° more than a right angle).

SCALENE TRIANGLE This triangle has sides of different lengths and three different-sized angles

QUADRILATERALS

Shapes that are made from four straight lines are called quadrilaterals. They have four vertices (points where the sides meet) - each of these is called a vertex. The interior angles of a quadrilateral always add up to a total of 360°. There are several different types of quadrilaterals.

RECTANGLE This is like a long version of the square: it has four right angles and two pairs of sides, but one pair is longer than the other. Opposite sides are parallel.

SQUARE This quadrilateral has four equal sides and four equa angles (right angles). The opposite sides of a square are parallel.

TRIANGLE
3 sides and angles

SQUARE

4 sides and angles

DECAGON
10 sides and angles

TRAPEZIUM A trapezium lor trapezoid) has one pair of opposite sides that are parallel but not equal in length.

A kite has two pairs of adjacent sides (sides that are next to each other) that are equal in length, and one pair of equal angles.

POLYGONS

polygon is a closed twodimensional shape that has three or more sides. It is usually named according to how many sides it has. For example, hexa is Greek for "six", so a hexagon is a polygon six sides. Every type of

CIRCLES

A circle is a closed curved line surrounding a central point, where every point along the curved line is the same distance from the centre point. In maths, the parts of a circle all have their own names.

DIAMETER

 A straight line that runs from one side of a circle to the the centre point.
PI

If you divide the circumference of a circle by its diameter, the answer is always 3 and a bit, or pi (π). It is impossible to write pi precisely, because the numbers after the decimal point continue forever.

$\pi=3.141592653$

FINDING AREA

The area of a two
dimensional shape is the amount of space inside it There are formulae that can be used to work out how much space there is inside any polygon.

Find the area by adding the two parallel sides, height, then dividing by 2 .

PYTHAGORAS'S THEOREM

This theory is named after an Ancient Greek mathematician called Pythagoras. He observed that if you draw squares from each side of a rightangled triangle, the area of the two smaller squares added together is equal to the area of the largest square.

USING THE THEOREM

Pythagoras's theorem can be used to find the length of the longest side of a right-angled triangle (c), if you know the length of the two shorter sides (a and b).

ROTATIONAL

SYMMETRY
If a shape can be moved around a centre point and still fit its original outline exactly, it is said to have rotational symmetry. The order of rotational symmetry is the number of ways a shape can fit into its original outline when rotated.

SQUARE

When rotated around its centre, a square fits its original outline in four different ways - its rotational symmetry
is order 4.

REFLECTIVE
 SYMMETRY

A reflection shows a shape in its mirror image, like a mountain reflection in a lake When a flat shape can be divided in half so that each half is the exact mirror image of the other, it is said to have reflective symmetry. The line that divides the shape to perform the reflection is called a line of symmetry.

EQUILATERAL TRIANGLE
An equilateral triangle has rotational symmetry of order 3when rotated, it fits its original outline in three different ways.

FINDING VOLUME AND SURFACE AREA

Volume is the amount of space enclosed within a three-dimensional (3-D) object. Surface area is the total area around the outside of a 3-D object.

CONE
Find the surface area of a cone using the radius of its base, its height, and its slant length. Find the volume using
the height and radius.

SPHERE
You can find the surface area and volume of a sphere using only its radius, because the other part of the equation, pi, is a constant number (3.14)

> surface area $=2 \pi r(h+r)$ volume $=\pi r^{2 h}$ CYLINDER The surface area and volume of a cylinder can be found from its radius and height (or length).

Slant length surface area $=2 l s+l^{2}$ vase of pyramid $=\frac{1}{3} L^{2} h$

SQUARE PYRAMID Find the surface area of a square pyramid by using the square pyramid by using the of its base Its volume can of is base. Its volume can be the side of its base.

TANGRAMS

Any shape that is made of straight sides can be split into triangles. If you were to cut up a piece of paper into triangles, for instance, you could reassemble the pieces in different ways to create new shapes. The game of Tangrams is a puzzle that uses a square

Cars

The first cars were invented more than 130 years ago. Originally known as "horseless carriages", these early models were slow, open-topped vehicles, but today's cars are fast, stylish, and can be powered by petrol, diesel, or electricity.

HOW A CAR WORKS

The power that turns a car's wheels comes from the car's internal combustion engine. Combustion is a kind of burning that takes place inside the engine when air is mixed with petrol or diesel, compressed, and gnited with a spark.

1. INSIDE THE ENGINE

Air and petrol (or diesel) are sucked into cylinders inside the engine by pistons, which then compress the mixture. A spark plug ignites it, providing energy.
2. IN GEAR \qquad The pistons move very fast, but a car needs more force and less speed to start moving. Gears control the force and speed the car receives
3. TURNING WHEELS The gears turn rods called axtes. Wheels are attached to these axles, so they turn too

BESTSELLING CARS

In 1901 only 600 cars were sold around the world. By 2014 yearly car sales had reached 71 million. Some models have sold in huge numbers, as shown below.

The world's bestselling car over 40 million of this Japanese model have been sold since 1966

FORD F-SERIES

 Ford have sold more than 35 million of these chunky pick-up trucks since theywere introduced in 1948 .
 VOLKSWAGEN GOLF Introduced in 1974, the Golf has been consistently popular - 27.5 million have been sold.

VOLKSWAGEN

 BEETLEFirst produced in 1933, 23.5 million Beetles have been sold worldwide.
 BEETLE 1948
FORD ESCORT
These family cars were produced from 1968. Sales eventually topped 20 million.

HONDA CIVIC

Honda was about to stop making cars before creating the Civic in 1972. 18.5 million have sold.

HONDA ACCORD

The first Japanese car produced in the USA, Honda has sold 17.5 million Accords since 1976.

∞

The original affordable car. Ford sold 16.5 million of these between 1908 and 1927.

VOLKSWAGEN PASSAT
Seven generations of Passat have seen total sales of above 15.5 million since 1973
CHEVROLET IMPALA
Chevrolet have sold 14 million of these since the car was introduced in 1958.

SUPERCARS

Cars that are designed to be faster, sleeker, and more powerful than normal cars are called supercars. They use cuttingedge materials and technology, and are very expensive. They are the cars that make onlookers say "Wow!"

1901 | Lohner-Porsche |
| :--- |
| produces the first |
| hybrid cars, which |
| can run on an |
| electric battery |
| and petrol. |

1908	
The Ford Model T is the first affordable car.	1913 Ford operates first moving car assembly line.

Mercedes-Benz 300 SL "Gull Wing is first produc $241 \mathrm{~km} / \mathrm{h}$ (150 mph).

1886

CARS THROUGH TIME

The first petrol-fuelled cars reached a top speed of $19 \mathrm{~km} / \mathrm{h}(12 \mathrm{mph}$). Since then, technology has given us affordable, faster, and safer cars with speeds of up to $435 \mathrm{~km} / \mathrm{h}$ (270 mph).

OFF-ROAD ADVENTURERS
These cars are specially built to travel along difficult terrain, such as muddy or very uneven roads. They are also known as "four-by-fours" because all four wheels are powered by the engine. This gives each wheel the ability to pull the vehicle out of a sticky position.

WILLYS MB JEEP 1941

LAND ROVER SERIES 1 1949

MERCEDES-BENZ G300D

BUGATTI VEYRON 2005

koenigsegg

 AGERARS 2015
Mercedes-Benz 300 SL "Gull Win

- 1959

The space-saving. compact Mini changes thinking
about economy cars

1971

Chryster Imperial introduces a reliable anti-lock braking system called Sure-Brake.

THE FUTURE IS GREEN
Hybrid cars have two kinds of
energy sources: a petrol or diesel engine and an electric motor. When the car is using the petrol or diesel engine, it also charges up the electric motor, which can then be used to drive. These cars use less energy and cause less pollution
than other cars.

TESLA ROADSTER
2007
This car is purely electric

FORD ESCAPE HYBRID New York City, USA, is now using more and more hybrid taxicabs.

This hybrid sports car can reach speeds of up to $250 \mathrm{~km} / \mathrm{h}(155 \mathrm{mph})$.

2008

RECORD BREAKERS

Over the years, manufacturers have
tried to outdo each other with new refinements. Here are some remarkable record-breaking cars

O FIRST AFFORDABLE CAR

In the early years of motoring, cars were In the early years of motoring, cars w
driven only by wealthy people. Henry driven only by wea
Ford changed this in 1908, when he produced the affordable Model T.

FORD
MODELT

O LAND SPEED RECORD
Thrust SSC (SuperSonic Car) used two turbojets to drive faster than sound in 1997 in the Nevada Desert, USA, reaching $1,228 \mathrm{~km} / \mathrm{h}$ (763 mph).

SMALLEST ROADWORTHY CAR
Built by Austin Colson in the USA in 2012, this car measures just $63.5 \mathrm{~cm}(25 \mathrm{in})$ high x 65.41 cm (25.8 in) wide $\times 126.47 \mathrm{~cm}$ (50 in) long. It is just big enough to be allowed on roads.

MOST EXPENSIVE CAR

In 2013 Lamborghini unveiled the world's most expensive car: the Veneno Roadster. It costs speed of $356 \mathrm{~km} / \mathrm{h}$ (221 mph). Lamborghini said that only nine cars would ever be produced.

O FASTEST PRODUCTION CAR

The fastest series production car is the Hennessey Venom GT. It reached a speed of $435.31 \mathrm{~km} / \mathrm{h}(270.49 \mathrm{mph})$ in 2014 , and is powered by a 7.0 -litre, twin-turbo V8 engine.

Tractors

A tractor is a vehicle designed to pull things - especially large farm machinery. Tractors have engines with a special gearbox that allows them to use all the engine's power for strength, not speed. Once fuelled by coal, they now run on diesel.

MODERN MACHINE ANATOMY

Modern tractors are very large and powerful. They have four huge wheels with grooved tyres that allow them to travel over wet, muddy ground, and reinforced cabs to keep the driver safe even if the tractor tips over. Other farm machinery can be attached using linkage and pick-up hitches, and

A YEAR ON THE FARM

Farmers work with the seasons, as seeds and crops will grow only when conditions are right. Tractors are useful at every stage of the process, from preparing the land to harvesting the crops.

1 PLoughing and
CuLtivating Atter the harvest,
tractors are used
to pull ploughs,
preparing the sreparing for seeding

FIRST TRACTORS

Tractors were invented in the 1860 s to do the job of horses around the farm. They had steam engines, large metal wheels, and a seat at the back.

IVEL AGRICULTURAL MOTOR 1903

MOGUL 8-16

1918
 became indispensable on farms.

ALLIS-CHALMERS MODEL U
1933

JOHN DEERE MC
1950

1933

CRAWLERS
From the 1920s farms also began to use the "crawler" or "caterpillar". These have tracks rather than wheels and can travel safely over slip
ground and steep hills.

PLANTING SEEDS Seeds are sown on to the fields using a tractor seeder.Modern machin make sure that ines

Trucks and diggers

People are often fascinated by the vehicles they see on our roads and hard at work on construction sites. These machines come in all shapes and sizes, and do very different jobs.

LIGHT TRUCKS

While some light trucks may only be car-sized, they are hardwearing, practical vehicles. These trucks are useful for carrying small loads and operating in small spaces.

WHAT ARE THEY FOR?
Trucks carry every kind of load. Oil and other liquids are transported in tankers while huge transporters carry other vehicles. Some trucks, such as road gritters, refuse trucks, and ambulances provide vital services.

THE LONGEST TRUCKS CALLED "ROAD TRAINS",

HAUL SEVERAL
TRAILERS AT ONCE

CONSTRUCTION Cement mixers diggers, and for building

EMERGENCY VEHICLES Specialized trucks, such as fire engines and police vans, respond

HAULAGE Large trucks and tankers haul their heavy loads over

SPECIALIST Highly specialized machines, such as specific jobs,

MEDIUM TRUCKS
Local delivery vehicles and trucks providing public services, such as rubbish collection or breakdown recovery, are usually medium-sized.

STREET-SWEEPER VEHICLE WITH SMALL CRANE

HEAVY TRUCKS

These huge vehicles have very powerful engines and strong structures to support their heavy cargoes. They are often "articulated", meaning a tractor unit pulls a trailer. The largest trucks are mining dump trucks, used to shift huge loads of

TIMBER TRUCK

DUMP TRUCK

Cars are loaded on to the transporter's decks

HYDRAULICS

Hydraulics means powering a machine using liquid-filled pipes. Liquids cannot be squeezed into a smaller space, so a pipe filled with oil can be used to exert force. If the pipe is wider at one end than the other, the force is increased.

HOW A HYDRAULIC RAM WORKS
Since the lift pipe is wider than the ram pipe, the lifting force is multiplied.

CRANES

Truck-mounted cranes move very heavy items around building sites. The engine of this crane powers a hydraulic pump that lifts the main crane boom

Pulleys increase lifting force of winch

MIGHTY MACHINES

The world's biggest dump trucks - or ultra class haulers - stand at around $8 \mathrm{~m}(26 \mathrm{ft})$ high. These mechanical monsters are used in mines and can carry a staggering 500 tonnes of debris - the weight of 38 elephants. At $10 \mathrm{~m}(33 \mathrm{ft})$ high, the largest hydraulic diggers weigh around 980 tonnes. They can shovel nearly 1,000 tonnes of material an hour

EMERGENCY VEHICLES

The most important trucks are those that save lives. Fire engines are equipped with ladders, water tanks, and other tools. Armoured SWAT trucks are used by the military and police, while ambulances ferry the sick and injured to hospital.

ambulance

POLICE VAN

AIRCRAFT TOW TRUCK

DIGGERS

Also known as excavators, these machines use a bucket on the end of a hinged arm (boom) to dig into the ground. Wheeled diggers are suitable for moving across hard surfaces, while tracked wheels are best for mud. Loaders are used to scoop up loose material, such as gravel, from the ground.

Trains

In 1804 British engineer Richard Trevithick tried attaching a steam engine to a wagon, a job that before then had been done by horses. It easily pulled enormous weights, and the steam railway was born. Today's trains use diesel, electricity, or magnetic levitation to run fast and cleanly.

STEAM POWER

A steam engine runs on the heat energy that is produced by burning coal or other fuel. Inside the steam engine there is a fire that heats a boiler filled with water. The steam that is produced goes into cylinders and pushes pistons backwards and forwards. The pistons are connected to the driving wheels, and push and pull them round.

DIESEL TRAINS

Steam engines polluted the air and were inefficient, so people began to look for better ways of powering trains. In 1892 the German engineer Rudolf Diesel invented the diesel engine that ran on a liquid type of fuel.

BOXLEY WHITCOMB 30-DM-31

ONE EARLY DIESEL PASSENGER TRAIN WAS CALLED THE FLYING HAMBURGER

STEAM ENGINES

Steam engines were the first form of locomotives. They were used in the UK from the early 1800s, spreading quickly to the rest of the world. The early trains were quite slow, but in 1934 a steam engine called Flying Scotsman reached 160 $\mathrm{km} / \mathrm{h}(100 \mathrm{mph})$ on a test run between Leeds and London.

FASTEST TRAINS

An early record-setting train was Stephenson's Rocket, at $46 \mathrm{~km} / \mathrm{h}(29 \mathrm{mph})$. In the 1960 s , Japan opened the world's first high-speed rail line, capable of carrying "bullet trains" that travelled at around $210 \mathrm{~km} / \mathrm{h}(130 \mathrm{mph})$ Some trains today can travel even faster.

MAGLEV: SHANGHAI METRO, CHINA UP TO $430 \mathrm{KM} / \mathrm{H}$ (267 MPH)

NORFOLK AND WESTERN 41

DR V15 (CLASS 101) MD GP9
1955

PRESTON DOCKS SENTINEL 1968

MAGNETIC TRAINS

Maglev trains use magnetic levitation to move trains along without having to touch the ground or any form of rail. Magnets allow them to rise and then travel extremely fast above special rails.

maglev train

HOW MAGLEV WORKS

GATWICK ADTRANZ C-100 1987

EUROTUNNEL LE SHUTTLE 1994

JAVELIN NO. 395017 2009

- 1869

The transcontinental
railway opens, making the USA a dominant economic power. Railways create big
 business in America, driving the Industrial Revolution.

2000s

2014

Japan's
Maglev Maglev
trains run faster than $480 \mathrm{~km} / \mathrm{h}$

East German
Battery shunter
1966

Motorbikes

A popular means of transport for nearly 100 years, motorbikes can move faster than any other road vehicles. There are specialized bikes for almost every purpose, from town riding to fun sports and racing.

FASTEST BIKES

Some specially built motorcycles can travel at more than $560 \mathrm{~km} / \mathrm{h}$ (350 mph). Such high speeds are not allowed on public roads.

MTT TURBINE SUPERBIKE Y2K - 365.3 KM/H (227 MPH)

SPORT BIKES

These bikes are designed for thrills. They have fast acceleration, powerful brakes, and can take corners at high speed. Some models are used for road riding as well as racing.
 INTERCEPTOR 1987
 YAMAHA YZF600R
THUNDERCAT 1998

CLOTHING

Riders need protective clothes that will help save them from injury if they fall off their bikes. The most vital piece of equipment is the helmet.

STANDARD BIKES

These bikes have little or no extra bodywork. They let riders sit upright, allowing them to see well ahead This improves safety, especially in busy towns. Standard bikes are often the first choice for new riders
 FLYING 81925
 TR6 1958

NORTON INTERNATIONAL 1948

CRUISERS

Modern cruisers are powerful luxury bikes, at their best on open roads. They are built to look stylish, but many riders find them less comfortable than touring bikes.

TOURERS

Comfortable rather than
ultra-fast, touring bikes provide an easy ride over long distances. They are also popular for everyday travel.

AIRFLOW 1959

ROYAL ENFIELD CONSTELLATION

SIDECARS

A sidecar is a small, one-wheeled vehicle that attaches to the side of a bike. It usually provides a passenger seat and some luggage space.

FIGHTER PLANES

Small, fast, and agile, fighter planes are designed for attacking other aircraft. The first fighters appeared during World War I. Today's planes have highly sophisticated tracking and weapons systems.

SOPWITH PUP

SOPWITH F. 1 CAMEL
DR. 1

BOMBERS AND STRIKE AIRCRAFT
The role of these aircraft is to strike ground and sea targets. Heavy bombers carry out long-range strategic missions. Low-flying strike aircraft can attack battlefield targets, such as tanks and troops, with great precision.

The story of flight

From the first balloon and glider flights to the launch of a solar-powered aircraft, people have always been fascinated by the idea of flying. The invention of aircraft that can carry people was one of the 20th century's great triumphs, and helped to shape the modern world.

KONGMING LANTERN

The Chinese-invented sky lantern la hot-air balloon made from paper) is named the Kongming lantern. It is used for signalling between military troops.

LEONARDO
 DA VINCI

An ornithopter - a wing-flapping aircraft - is designed by Leonardo da Vinci. He also sketches flying machines such as helicopters and parachutes lalthough he does not build them), and studies airflows and streamlined shapes

1783
FIRST MANNED FLIGHT
The first recorded manned flight - lasting about 25 minutes - takes place in a hot-air balloon built by the Montgolfier brothers The balloon is made of linen lined with paper.

HOT-AIR BALLOON

Bicycles

Millions of people around the world use bicycles as an efficient means of transport. Cheap to buy, they are easy to run and produce no pollution. Cyclists can select special types of bikes for different terrains or tracks.

HOW A BIKE WORKS
A bike converts 90 per cent of energy from pedalling into forward motion Changing gear - moving the chain

CHAIN
Cher from Transfers power from
the pedals to the rear wheel, via the cogs.

FRONT DERAILLEUR Shifts the chain between differentsized chainrings.

PEDAL Connects
the rider to the rider to the bicycle

CHAINRING chain via the cogs, thereby powering the

OFF-ROADERS

These hardy bikes are built to withstand tough, off-road conditions. They have a strong frame, knobbly tyres for extra grip on rough ground, and are usually equipped with a good range of gears.

ROCKY MOUNTAIN VERTEX TEAM

KONA STAB PRIMO
TREK 6000

(8)

Nature

HOW MANY SPECIES
 could possibly count up all the bacteria and archaea because there are simply too many millions of them.

BEGINNING OF LIFE: SINGLE-CELLED ORGANISMS
 BEGINNING

CLASSIFICATION OF LIFE
Starting with the kingdoms, all living things are arranged, divided into classes, classes are split into orders,
or classified, into further groups according to how they are and so on. Shown below is how a tiger Iscientific
The first living things that appeared on Earth, billions of years ago, were tiny
organisms made of just one cell. This
"tree" shows how such simple beginnings led to the development of the wonderful variety of life we know today.

ARCHAEA

There are far more species of anima
of plants, fungi, and protists added to

\square

3

How life began

The very first life forms appeared on Earth around 3.5 billion years ago. Fossils preserved in rock help us chart the story of life from the first single-celled bacteria to the modern humans who roam Earth today.

DIVISION OF TIME

Earth's geological history can be divided into blocks of time. An era represents several hundred million years and is split into smaller periods. Earth is currently in the Quaternary Period of the Cenozoic Era.

PRE-CAMBRIAN 4.6 BYA-541 MYA

PALAEOZOIC ERA 541-252 MYA

MESOZOIC ERA

252-65 MYA
\square CENOZOIC ERA 65 MYA-PRESENT DAY

BYA $=$ Billion years ago
MYA = Million years ago
4.6 BYA-541 MYA

PRE-CAMBRIAN
This represents 80 per cent of total geological time. Volcanic activity on the new Earth produced water. Simple lifeforms appeared, and some produced oxygen.

VOLCANIC EARTH

541-485 MYA
CAMBRIAN
Many types of marine life evolved in the so-called "Cambrian explosion" They included molluscs, sponges, and animals with jointed legs

ECHMATOCRINUS

Fossils

Fossils are clues preserved in rocks, amber (tree resin), tar, or ice. They show us what plants and animals looked like thousands or millions of years ago and can sometimes tell us where and how they lived.

HOW FOSSILS FORM
Fossils form when a plant or animal is buried quickly and deeply after it dies. The sediment that surrounds the animal gradually turns its body into rock over thousands of years. This is called fossilization.

TIME PASSES The minerals crystallize and the them solidifies into rock, forming fossils

PLANTS

Fossil plants are usually fossils of parts of the plant, rather than the whole thing. They include leaves, flowers, cones, bark, and wood.

SEED FERN LEAFLETS

PUTTING IT TOGETHER

Dinosaur bones can be found scattered over a large
area and scientists then work out how they are pieced together. Dinosaur skeletons are very like bird and

ECTOCARY
SEEDS

INVERTEBRATES

Fossils of animals without backbones have been found in large numbers and from a wide range of animal types

SPIDER TRAPPED IN AMBER
ACTINOCYATHUS
CORAL

LITHOSTROTION
SEA PEN

SEA SNAIL
SEA LILY MILTONIFROND

TRILOBITE

SHELL
5 SURFACE EROSION
Fossilized remains
of creatures begin to
be revealed as the land
is eroded slowly over

thousands of years. | ExCAVATION |
| :--- |
| carefully freed from |
| the rock that has long |
| surrounded them. |

FOSSIL TYPES
Fossils may be formed
from the remains of plants or animals, or from traces of their activities during life.

TRACE FOSSIL
These are fossils showing animal activity, such as footprints, burrows, or nests.

PARADOXIDES
VERTEBRATES
Fossils of vertebrate animals are some of the most exciting fossils ever found. They reveal species - such as dinosaurs and flying reptiles - that existed millions of years ago.

THECODONTOSAURUS

PANTHERA LOWER JAW

REMAINS OF HOMOEOSAURAS

SHARK TOOTH

FOOT SKELETON OF PLATEOSAURUS

O IMPRESSIONS
These are fossils where
the animal or plant body has decayed completely but left an
impression in the sediment.

PETRIFICATION
This type of fossil is formed when minerals crystallize inside the body cells, preserving them in stone

NATURAL CAST
In cast fossils, sediment hardens in natural gaps inside an animal, such as the inside of a shell.

Plant-eating dinosaurs

Plant-eating dinosaurs roamed Earth for more than 140 million years. There were many different kinds, and they included some cou of the largest land creatures the world

HERBIVORE ANATOMY

Many herbivorous (plant-eating) dinosaurs were quadrupeds - they walked on all fours. The largest herbivores had powerful muscles and strong bones to support their weight. Their digestive systems were adapted for eating plants, which are more difficult to digest than meat.

SELF-DEFENCE

Even the largest plant-eating dinosaurs risked being hunted and killed by meat-eating dinosaurs. Over time herbivores developed specialized body defences for survival. These included horns, spikes, spines, and heavy tails that could inflict terrible injuries

BONY PLATES Covering the head of Euplocephalus, these bony plates provided protection against the jaws and teeth ors.
tail club Some plant-eaters particularly ankylosaurs, had heavy, club-like tails made of fused
bone that could break a predator's leg.

SPINY SKULL A thick skull topped with spines protected a Sauropeltas vulnerable brain

THE HORNS OF TRICERATOPS

WERE AN AMAZING
1 M (3 FT) IN LENGTH

SHARP HORNS Huge plant-eater Triceratops had extremely long, sharp horns, which it used to fight off predators, such as the giant meat eating Tyrannosaurus.

SPIKY TAIL The Stegosaurus had very sharp spikes on the end of its tail that could inflict terrible injuries on an opponent.

WHIP-LIKE TAIL It is suggested that the mighty Diplodocus used its long tail like against attackers.

HEAVYWEIGHTS

Like humans, elephants, and other animals, dinosaurs were vertebrates: they had an internal skeleton with a backbone to support their bodies. Many, though, were much heavier. At 70 tonnes, Argentinosaurus was 15 times heavier than an elephant.

HUMAN
($80 \mathrm{KG} / 176$ LB)

ORNITHOPODS

Ornithopods, including Iguanodon, lived 145-66 million years ago. They could stand on two legs to reach into trees and could chew plants very efficiently. Corythosaurus, for instance, had hundreds of teeth for grinding plants.

LESOTHOSAURUS LEAELLYNASAURA
heterodontosaurus
DRYOSAURUS

Meat-eating dinosaurs

Dinosaurs appeared on Earth about 245 million years ago. They spread to every continent and dominated Earth for millions of years before dying out. Many were powerful meat-eating predators, with bodies built for attack.

THEROPODS

Carnivorous (meat-eating) dinosaurs belong to a group known as theropods. Meaning "beast-footed", theropods stood on their hind legs. They ranged from huge carnivores such as Allosaurus to the smaller feathery Citipati and Alxasaurus.

CITIPATI

STRUTHIOMIMUS

CRYOLOPHOSAURUS

DIET

Theropods were the most powerful predators on land. They fed on insects, fish, other dinosaurs, small mammals, and bird-like creatures.

INSECTS Insects evolved more than 350 million years ago

EARLY MAMMALS Rodent-like mammals existed with dinosaurs.

EARLY BIRDS Birds evolved from earlier theropod dinosaurs.

TEETH

Scientists can learn about dinosaurs from their fossilized skulls and teeth, which are often the only remaining parts. Carnivorous dinosaurs had lethal claws and sharp teeth.

KNIFE-LIKE
Theropods such as Allosaurus had sharp teeth that they used o slice meat from the bon

SHARP POINTS
Baryonyx and other fish-eating theropods had pointed needle-like teeth that pierced fish skin.
 The large teeth of traight through bone

PACK HUNTING

A pack of Deinonychus attacks a large plant-eating Tenontosaurus. Evidence from fossilized dinosaur footprints suggests that some dinosaurs hunted in packs. Probably they did not herd prey but worked together to bring down larger dinosaurs.

Prehistoric animals

The first signs of life appeared more than 3.5 billion years ago when tiny single-celled organisms evolved in the oceans. Over millions of years, other organisms evolved, moved on to land, and even took to the air.

EUDIMORPHODON

TYPES OF

PREHISTORIC ANIMALS
We use the term "prehistoric" for creatures that existed before recorded history. They were very diverse. The dinosaurs are probably the best known and most familiar, but there were also fish, invertebrates lanimals without backbones), reptiles, amphibians, and mammals

invertebrates
This squid-like belemnite lived in the behistic lived in the prehistoric oceans som

SCIENTISTS THINK THAT EITHER AN ASTEROID STRIKE OR ERUPTING VOLCANOES CAUSED A MASS EXTINCTION OF PREHISTORIC ANIMALS

ON LAND

Plant life developed on land about 472 million years ago. Creatures crawled out of the seas to become

LYSTROSAURUS

DINOSAUR

THE WATER
Prehistoric seas were full of life. Early organisms such as Wiwaxia, Opabinia, and Anomalocaris seem very strange to us. However, later fossil fish such as Megalodon and Hybodus look a lot

$\xrightarrow{-2 \mathrm{n}}$

FISH
The very first vertebrates (animals with backbones) to
evolve were fish.

REPTILES The earliest reptiles evolved from amphibians ago. They had scaly skin.

AMPHIBIANS Like frogs today, prehistoric amphibians could breathe air but bred in fresh water.

MAMMALS The first mammals appeared on Earth about 220 million years ago.

TRANSITION TO MODERN ANIMALS
About 65 million years ago a huge catastrophe wiped out many prehistoric creatures. Birds and some animals survived. Later, new animals emerged, including the ancesto
the mammals we know today.

MOERITHERIUM
This pig-sized relative of the elephant family lived in African swamps and woodlands more than 35 million years ago.

Short tapir like trunk

Unlike modern elephants, curved tusks point downwards

Plants

There are around 400,000 species of plants on Earth. Plants make their food using sunlight, water, and carbon dioxide, and they are an important food source for all land animals. They also produce oxygen, which is vital to all life.

HOW PLANTS GROW

In spring, seeds get warm, absorb water, and start to sprout (germinate). Roots begin to grow downwards to get water and nutrients from the soil, while shoots grow upwards, towards the light.
 1 GERMINATION (the micropyle) in the seed coat takes in water and the seed swells.

PHOTOSYNTHESIS

Plants make their own food (glucose) through a process called photosynthesis. They soak up water from the soil and take in carbon dioxide from the air They then use the Sun's energy to produce glucose.

NON-FLOWERING

 PLANTSThese evergreen plants tend to like damp, shady places. They reproduce by releasing spores. Spores from coniferous plants are carried by the wind to special cones, where seeds develop.

GOLDEN GOLDEN
LARCH

FLOWERING PLANTS
 NTS

The colourful and often fragrant
flowers of these plants attract
insects. The insects pick up pollen and transport it to other plants of the same type, helping it to reproduce.

MAGNOLIA

tULIP TREE
\qquad

WINTER'S BARK

ARROWHEAD
bottLebrush

POOL WATER LILY

ADAPTABLE PLANTS

Plants cannot protect themselves from animals or harsh weather conditions by moving, so they have other adaptations that help them survive. Plants in hot deserts can live with very little water, for instance, while those near the sea are very salt-tolerant.

CONIFERS
Coniferous plants stay green all year round. They have long, thin needles that need less water and can
withstand freezing weather

Cacti live in very hot places, so they have small spines instead leaves, which do not allow so much water to aporate. Their ste
also store water

MANGROVES

These grow near the sea but their leaves are able to get rid of (secrete) excess salt. If the salt levels become too high, the leaves just fall off.

HIBISCUS

AMARYLLIS

CARNIVOROUS

PLANTS

Some plants grow in soil that does not have many nutrients, so they get additional nutrients from animal prey, such as insects. Many attract their prey using colour and smell and then trap it. The plant's digestive juices break down the prey so it can be absorbed.

CATCHING PREY

 The Venus flytrap catches its insect prey very fast - it snaps shutin a tenth of a second. If an insect lands on the plant and touches sensory hairs, the plant snaps into action

BUTTERWORT

POISONOUS P PLANTS

Some plants use poison as a protective device, so that people and animals do not eat them. These plants are among the deadliest to humans.

O OLEANDER

The whole oleander plant is poisonous. Even smoke from burning oleander is highly toxic.

O WATER HEMLOCK

The most deadly plant in North America, a tiny dose of this plant can be lethal if eaten One species also occurs in Europe.

O ROSARY PEA

These bright red seeds contain the most deadly plant poison known to humankind.
O DEADLY NIGHTSHADE
All parts of this plant contain deadly toxins
Thut plant lobes
snap together, trapping
snap together, trapping
the insect. Digestive juices are released.

CASTOR BEAN

These contain ricin, one of the deadliest plant toxins. It is more toxic when inhaled than eaten.

Flowers

Flowers, often colourful and scented, play a vital role in a plant's life cycle. They contain organs that produce pollen and seeds. Pollen is taken from one flower to another in various ways. The flower receiving the pollen is fertilized (pollinated) and then forms seeds to make new plants.

STRUCTURE

 OF A FLOWERThe parts of a flower are centred around the task of reproduction. Flower petals surround an ovary that produces eggs, and a stigma that is ready to accept pollen. When eggs and pollen meet, they create seeds.

MONOCOTS

This group of flowers has several features in common: their petals are always in multiples of three; they have one main stem, which has very few leaves; and their stems contain veins that run in parallel lines.

CLUSTER
 FLOWERS

Some plants have a cluster of flowers on each stem called an inflorescence. Such clusters are found in both monocots and eudicots. The flowers may branch out at intervals from the main stem or group together on the tip.

GREEN FLOWERS

Plants with green flowers use wind pollination, as they are less attractive to insects. The flowers also tend to be small and not always easy to see. Their pollen-containing parts are positioned to catch the breeze.

Stinking hellebore

POLLINATION
Flowers reproduce by pollination - pollen being taken from one flower to another. Some plants self-pollinate, but animals, wind, and
water often play a part.

ANIMAL

 Many flowers contain nectar that attracts animals such as bees. While drinking the nectar the animal gets coated with pollen which it carries to other flowers. WIND
Some plants, such as grasses, rely on wind for pollination. They produce lots of pollen to increase the chances of it landing in the right places.

WATER A small number of aquatic plants are pollinated by water. Pollen is released into the water and carried to other plants by water currents.
 from the anther to the stigma of the same flower, or to the same plant.

FRUITS

Fruits are the parts of a plant that contain seeds. Some fruits change colour and become juicy when ripe, which makes them attractive to animals. If a fruit is eaten, its seeds pass through the animal's digestive tract and are dispersed in its droppings. Some types of fruit have wings or hooks and are carried on the wind or stuck in an animal's fur.

5 MATURE FRUIT The melon is ripe If an animal eats it the seeds will be dispersed

EUDICOTS

These complex flowers have
flower petals in multiples of four or five. They also have lots of branches coming off the main stem, and their

THE GREAT

PRETENDERS

Some flowers have evolved in ways that would make them at home in fairy tales. Among them are flowers that look like insects Others smell of bad meat or the foul scent sprayed by skunks. Such strange adaptations have a good reason - they are tricks to attract pollinators.

RAFFLESIA
Rhis is ala This is also known as the corpse flower because it smells
like a rotten carcass. It has no roots or leaves, and lives off other plants, taking their nutrients and water.

WESTERN SKUNK CABBAGE The tiny flowers are surrounded by a vivid yellow structure called a "spathe". Some insects love the skunky smell of this plant.

STINK LILY
The long black spike (spadi) on this plant stinks of rotten meat - which attracts flies hoping for a meal.

Trees

The largest plants on Earth, trees have been here for millions of years. They are vital to the planet's survival. Their leaves absorb harmful substances from the atmosphere and produce oxygen. Trees keep the air moist, which helps to create rainfall, and provide homes and food for wildlife.

WHAT IS A TREE?

A tree is a tall plant with,
usually, a woody stem called a trunk that divides into eversmaller, leaf-bearing branches A network of roots anchors the tree to the ground and draws up water and nutrients from the soil.

DECIDUOUS TREES

Trees that lose all their leaves for part of the year - for example, oaks and beeches - are called deciduous. They have flat leaves of many shapes that are usually shed in cold or dry seasons. The tree remains bare until warmer weather returns, when new leaves grow. Deciduous trees are found in many regions of the world

WHITE MULBERRY

ENGLISH OAK

COMMON ALDER
SILVER BIRCH
COMMON HORNBEAM

QUINCE

COMMON FIG

turpentine tree

EVERGREEN TREES

These trees have leaves all year they are constantly replaced by new ones. Evergreens include firs, pines, cedars, and spruces. Many grow in northern regions, where they thrive in harsh, cold climates.

LEMON TREE CEDAR OF LEbANON

COMMON YEW

ANCIENT TREES

The first tree-like plants that grew on Earth, about 380 million years ago, were spore trees. These reproduced not from seeds but from cells called spores on the underside of their leaves. The only spore trees living today are the tree ferns. Another ancient tree is the Ginkgo, a survivor from before the age of dinosaurs.

BONSAI

The ancient oriental art of bonsai creates tiny replicas of large trees. Techniques such as wiring roots and branches stop the tree from reaching its full growth. Bonsai can be used on any type of tree to produce a miniature version small enough to keep in a pot.

JAPANESE MAPLE

CAP-AND-STEM

The most easily recognized fungi are the "umbrella or cap-and-stem type. They come in all shapes and sizes. Some are small and spindly, others have fat stems and thick, fleshy caps.

BALL-SHAPED

Some fungi are round like balls. They range in size from tiny ones clustering on stems to giants as large as a football. The type called puffballs split open to release the spores stored inside.

Mushrooms

Although they look like plants, mushrooms are quite different and belong to a separate scientific group - the fungi. They come in many shapes and colours, and all of them feed on organic matter. Some mushrooms are edible but others are deadly poisonous.

LIFECYCLE OF A MUSHROOM

The real growth of a fungus takes place out of sight. Beneath the ground, a web of fine threads develops from the mushroom's spores (reproductive cells) and

WHERE FUNGI GROW

Finding and identifying fungi means
knowing the right places to look. For example, some fungi grow by certain trees.

UNDER TREES
The hazel bolete mushroom grows in leaf beds under hazel
FALLEN BRANCHES The common brown cup mushroom grows on oak bark.
 and hornbeam trees.

FIR CONES The earpick fungus grows directly out of decaying fir cones.

ON OTHER MUSHROOMS Silky piggyback mushrooms grow on the rotting bodies of other fungi.

BRACKET-LIKE

These types of fungi are found on trees or dead wood. They grow like shelves, sometimes forming row on top of row. Bracket fungi can eventually kill living trees by attacking their tissues.

CLUB-SHAPED

With their upright shapes and no noticeable cap, club fungi can be hard to recognize as mushrooms Some types grow in clumps.

JEWELLED AMANITA
mushroom can cause sickness and stomach pains less than an hour after being eaten.

FUNERAL BELL

Found on rotting wood, the yellowishbrown funeral bell contains a poison that causes liver damage and, without fast treatment, death.

DEADLY WEBCAP
This is very dangerous because it looks like the edible chanterelle mushroom. If eaten, the webcap damages the liver and kidneys.

STAR-SHAPED
In these fungi, the spores are held in a round case. To release the spores, the outer layer of the case splits open like a many-pointed star.

CORAL-LIKE

Often brightly coloured, the clustered, branching stalks of coral fungi look very similar to the corals found in tropical seas.

SPIDERS

There are about 4,200 species of spiders. They have eight legs, and six or eight eyes. Most spiders can live for up to one year, if they avoid disease and predators. Some big spiders, such as the tarantula, can live for up to 20 years.

WEB SPIDER

NG-LEGS SPIDER

NORTH AMERICAN
TRAPDOOR SPIDER

SPIDER

WATER SPIDER

AMERICAN GOLDEN SILK ORB-WEAVER

SPIDER

CHACO TARANTULA

EUROPEAN

Spiders and scorpions

Spiders and scorpions are part of the arachnid family - invertebrate animals with eight legs. They are alike in many ways, but a scorpion has a venomous stinger in its tail, while spiders have venomous fangs.

SCORPIONS

A scorpion's body is encased in a tough shell-like covering Claws near the head are used to seize prey and fight predators, while its tail ends in a venomous stinger.

YELLOW THICK-
TAIL SCORPION

ANATOMY OF A SPIDER

A spider's body is divided into two parts. The first part includes the eyes, fangs, stomach, and legs, while the second part contains the silk glands, known as spinnerets Spiders have four pairs of legs, and use the hairs on these to pick up smells, sounds, and vibrations.

SCORPLINGS

Young scorpions develop inside their mother's body After birth, they climb on to her back until their external skeleton moults for the first time

Crustaceans

The animals called crustaceans are a varied group that includes crabs, lobsters, prawns, and shrimps. Most of them live in water. Among the few found on land are tiny woodlice. Crustaceans have an outer skeleton that does not grow when their bodies do, so they shed it regularly to allow a new, larger one to develop.

THE BODY OF A CRUSTACEAN

Lobsters and crabs have three body regions: the head the thorax or mid-section, and the abdomen. They have five pairs of legs, which in some species form pincers.

LIFECYCLE OF A CRAB

Like most crustaceans, newly hatched crabs look very different from their parents. They develop into adults through several stages. A female crab lays millions of eggs, of which only a handful survive

SURVIVAL TACTICS

Crabs are a tasty meal for many other sea creatures. They often dodge predators by hiding under rocks or in a tangle of seaweed. If cornered a long way from shelter, a crab uses different tactics to get out of trouble.

CROUCH

ESCAPE

With luck, the crab confuses the attacker and has off to safety.

DEADLY BUBBLE

The 5 cm (2 in) long pistol shrimp makes a big noise for its size. Meeting prey, the shrimp opens the larger of its claws and snaps it shut at lightning speed. The snap creates an air bubble, which bursts with a bang loud enough to stun the victim

3 PREY STUNNED bubble bursting stuns the prey. claw wide.

CRABS

All but a few crabs live in the sea Most of them have flat bodies and a wide shell. The soft-bellied hermit crabs protect themselves by living in the empty shells of other marine animals Crabs move by walking sideways.

LOBSTERS AND

OTHER FAMILIES

ike most crabs, lobsters live in the sea These large animals have a hard upper shell and powerful tails. Smaller crustaceans include numerous shrimps, both marine and freshwater. Sea slaters and woodlice belong to a large family whose members are found on land as well as in water.

RECOGNIZING

AN INSECT

Insects come in many forms. Most have wings, and there are other features that make them easier to recognize, too.

THREE BODY SEGMENTS

 often have wings
 EYES

INSECTS WERE THE FIRST ANIMALS TO FLX, 400 MILLION YEARS AGO

Insects

Out of all the animals on Earth, insects are the biggest success story. There are greater numbers, living in more places, than any other type of creature. More than a million insect species have been identified - and there may be millions still to discover.

THE BODY OF AN INSECT
Insects have three main body segments: the head; the thorax, or midsection, to which the legs, and maybe wings, are attached; and the abdomen or belly. All these parts are protected by a hard outer skeleton.

TRUE BUGS

Not all so-called bugs are true bugs. These are a group of insects with long beak-like mouthparts made for piercing and suck
from plants and animals.

GRASSHOPPERS AND CRICKETS

A grasshopper makes its loud chirp by rubbing its hindlegs against its wings. Crickets "sing" by rubbing their wings together. Both types of insect fly and jump.

ANTS, BEES,
 AND WASPS

These groups of insects include many that sting. Ants and nearly all types of bees and wasps live in organized colonies.

- 构菏

WOOD ANT ARMY ANT

DRAGONFLIES AND DAMSELFLIES

Slender bodies and large wings make these the flying aces of the insect world. They are skilful insect world. They are skilful
predators, darting through the air to catch other insects.

-TM

FLIES
There are thousands of species of flies around the world. Although some types are disease-carrying pests, many are useful as pollinators of plants

bluebottle

Butterflies and moths

With their delicate shape and often stunning colours, butterflies and moths are beautiful insects. All have four wings covered in tiny scales that create a mosaic of exquisite patterns. Most butterflies and moths feed on nectar from flowers and are important for pollinating plants.

WHAT'S THE DIFFERENCE?

Most butterflies fly by day and are brightly coloured. At rest, they usually fold their wings upright. Moths fly largely at night and most have duller colouring. They have furry bodies and feathery antennae. When resting, moths either hold their wings apart or fold them close to the body.

BUTTERFLIES

There are butterflies nearly everywhere in the world. The biggest wings and boldest patterns are seen mostly in species from tropical regions. A butterfly's colours not only attract mates but also provide protection. To a predator, bright wings are a warning that the prey could be poisonous to eat.

LAND SNAILS

Among the best-known animals on Earth, land snails range from species no bigger than a pinhead to the giant African land snail, which can reach $30 \mathrm{~cm}(15.5 \mathrm{in}$) long and weigh up to $900 \mathrm{~g}(2 \mathrm{lb})$.

SOME TYPES OF SNAILS ARE HUNTERS THAT PREY ON WORMS, SLUGS, AND EVEN OTHER SNAILS

Their shells are more than portable homes. The colours and patterns provide camouflage by blending

LAND SLUGS

With no shell to retreat into, slugs have to hide, emerging at night to feed. Some live underground. Although seen as pests for devouring garden plants and farm crops, slugs play a useful part in breaking down rotting vegetation.

SEA SLUGS

As wobbly as jelly and often as brightly coloured, sea slugs creep over seabeds and corals. Some can swim in a clumsy fashion. They carry gills, or breathing organs, such as feathers or spikes on their backs.

BONELESS BODIES

Slugs and snails have no bones. Their soft bodies consist of a head, a central part containing the organs, and an underside, or "foot", that they use for moving. The head carries one or two pairs of tentacles that contain eyes and other sense organs.

SHELL SHAPES

Most snails have spiral shells, which come in many shapes and sizes. More unusual types of shells usually belong to sea snails Among the variations are elegantly twisted cones, irregular shapes bristling with spikes, and flat shells like caps.

HABITATS

There are tens of thousands of different slugs and snails living in a wide variety of habitats. They are found on mountains and seabeds, and in rivers, forests, and gardens.

SALTWATER FISH
Fish that live in the sea are known as saltwater, or marine, fish. There are around 16,000 marine species

Sharks

Sharks have prowled the oceans for 400 million years, which means they existed before the dinosaurs. In all that time they have hardly changed at all, perhaps because they are so perfectly suited to their environment. There are around 500 different species of sharks.

ANATOMY
Sharks have a skeleton made of cartilage, not bone. Most species have eight fins, and many rows of teeth. A strong tail provides them with movement and direction.

SHARP TEETH

TYPES OF SHARKS

Sharks vary in size enormously. The slow-moving whale shark is about $8 \mathrm{~m}(26 \mathrm{ft})$ long, while the dwarf lanternshark is smaller than a human hand. Some eat large animals, such as seals, while others feed on tiny plankton.

BLUNTNOSE SIXGILL SHARK

SENSES

As well as having excellent eyesight, hearing, and sense of smell, sharks have an extra sense that humans do not have electrical sensing. Special pores in their skin pick up electrical fields generated by other animals.

Nasal

Two nasal cavities give the shark an acute sense of smell.
 The snout contains cells that sharks use to "receive" electric signals from nearby creatures.

LETHAL JAWS

To catch its prey, a great white shark lifts its snout, drops its upper jaw, sticks out its lower jaw, and takes a large bite. Sharks' teeth are sharp, often serrated, so they can rip through flesh easily.

MISTAKEN IDENTITY

Although there are around 500 shark species,
only 25 have been known to attack humans.
This may be because they mistake people for
fish, seals, sea lions, or turtles.

SHARKS USUALLY LET GO AFTER EACH BITE THEY TAKE OUT OF THEIR PREY

RELATIVES
Rays, skates, and sawfish are flattened fish that are related to sharks. They too have a skeleton made of cartilage. These fish have existed on Earth for at least 150 million years

MEGAMOUTH
SHARK

BLUESPOTTED RIBBONTAIL STINGRAY

Seashells

The shells that wash up on beaches are the empty homes of soft-bodied sea animals called molluscs. Shells come in amazing shapes and colours. Some have two joined halves, others are in one piece, often a coil or a spiral. No two, even of the same type, are ever identical.

WHO NEEDS A SHELL?

Molluscs have easily damaged bodies and are too slow moving to hurry away from danger. A rigid shell provides a safe place to retreat into or close up tightly when predators are around. Empty shells make useful shelters for other animals.

Tucked beneath its shell, a limpet clinging tightly to a rock is very difficult to dislodge.

HERMIT CRAB This soft-bellied crab makes its home in discarded sea snail shells

FLAME SCALLOP It is hard for a predator to open a scallop shell once the hinged halves are firmly shut.

HINGED SHELLS

Many sea animals - such as clams, scallops, and oysters - are bivalves. Their shells are divided into two parts called valves that are joined by a hinge. The animal opens the shell to feed and closes it to take refuge

CHICKEN VENUS

AUSTRALIAN BROOCH CLAM

GIANT RAZOR
GIANT RAZ
SHELL

PACIFIC THORNY OYSTER

SNAIL SHELLS

The largest group of seashells are those of the sea snails. These are endlessly varied in size, shape, and pattern. There are species that twist like corkscrews, while others coil or look like caps or shiny eggs. The animals that live in these shells creep slowly about on a large fleshy foot.

SHORE CRAB
Crabs regularly shed their own shells. Until a new one hardens, a "borrowed" scallop shell can provide protection.

INSIDE A SHELL
The whorls or coils of a spiral seashell
form around a central inner pole, or pillar. As the animal inside grows bigger, further whorls are added. The smallest and oldest whorls are at the top of the shell.

Oldest

SIZE COMPARISON

The biggest molluscs on Earth are the giant clams, which can weigh as much as 227 kg (500 lb). The smallest shells belong to some minute sea snails, several of which would fit on a thumbnail.

FROGS AND TOADS

There are around 5,860 species of frogs and

MEXICAN
BURROWING TOAD

ORNATE HORNED TOAD

STRAWBERRY POISON-DART FROG

GREEN AND BLACK POISON-DART FROG

LEHMANN'S
POISON-DART FROG

DYEING POISON FROG

YELLOW STRIPED POISON FROG

DUCK-BILLED TREE FROG

GREY FOAM-NEST TREE FROG

WHITE-LIPPED TREE FROG

WHITE'S TREE FROG

SPRING PEEPER

GOLDEN POISON FROG

YELLOW-HEADED POISON-DART FROG

SALAMANDERS

 AND NEWTS Salamanders look like lizards, with long bodies and tails. However, unlike lizards, salamanders have soft, moist skin.

Amphibians

Amphibians are cold-blooded vertebrates that start life in the water, where they breathe using gills. As adults they develop lungs, which allow them to live on the land too. Frogs, toads, newts, and salamanders are all amphibians.

FEATURES

Most amphibians share some key features. They start life as eggs and then aquatic larvae, and need to live close to water as adults.

LIFECYCLE OF A FROG

Frogs lay hundreds of eggs because many of them get eaten by predators. Those that survive undertake remarkable changes, becoming tadpoles then frogs in a cycle that lasts 11 weeks.

CAECILIANS

These limbless,
worm-like amphibians are rarely seen. They live in soil, burrows, or underwater and use their sharp, curved teeth to catch worms

HUNTING

A hunting frog usually sits still until it sees a bug or worm within range. Then it jumps or leans forward, catching its prey on its long sticky tongue.

PARENTAL CARE

Female midwife toads lay

1 GOLDEN POISON-DART FROG
One of the most toxic animals on Earth, this frog only carries about 1 mg of poison, but that is enough to kill 10 humans. It lives in Colombia and stores poison in its skin.
2 BLACK-LEGGED DART FROG
A cousin of the golden poison-dart frog, poison is used on the tips of hunting darts.
3 PHANTASMAL POISON FROG
This bright red and white frog lives in Equador. It is tiny - only 1-4 $\mathrm{cm}(0.4-1.6$ in $)$ Equador. It is tiny - only $1-4 \mathrm{~cm}(0.4-1.6 \mathrm{in})$ -
but deadly. Despite its size, it carries enough but deadly. Despite its
toxin to kill a human.

HOW FROGS

SWIM

Most frogs propel hemselves through water it The smaller forelimbs help it to change direction.

1 PULL
The frog pulls its back legs towards its body by contracting its thigh muscles

2 KICK
KICK
It pushes its forelimbs down to its sides as it begins to kick backwards.

TURTLES

Most turtles spend nearly all their lives in water For a few species, this is the sea, but there are also freshwater turtles, some of which are called terrapins. With streamlined shells and webbed feet or flippers, turtles are well made for swimming and diving.

COMMON
SNAPPING TURTLE

SPOTTED
TURTLE

MISSISSIPPI
MAP TURTLE

LOGGERHEAD SEA TURTLE

NORTHERN RED-BELLIED TURTLE

EUROPEAN POND TURTLE

TORTOISES

These slow-moving land-dwellers have strong shells, often with a high dome that is difficult for predators to bite. They have short, bent legs and strong, stumpy feet.

Turtles and tortoises

There were turtles and tortoises on Earth even before the dinosaurs. They all belong to the same scientific group. The main difference between them is that turtles live in water and tortoises on land. All have shells and lay eggs.

INSIDE THE SHELL
Turtles and tortoises have an unusual skeleton. Their ribs, spine, and some other bones form part of the shell. In nearly all species, the shell has a bony inner layer covered by thin plates of keratin, the same material as human fingernails.

LIFECYCLE OF A TURTLE

All sea turtles come ashore to la their eggs. They visit the same nesting beaches year after year. Depending on the species, the female ma lay 50-200 eggs.

HIDING FROM DANGER

Tortoises move too slowly to run away from their natural predators, which include ravens, foxes, and dogs. Fortunately, they carry their own hiding place which often keeps them safe until the danger has passed.
 is lurking nearby.

RETREATS INTO SHELL
Pulling in its legs and long. flexible neck, the tortoise disappears right into its shell. It is safe from the predator.

Lizards

With more than 5,500 species, lizards are the largest group of reptiles on Earth. They are cold-blooded animals that live in every continent except Antarctica. Lizards are useful predators of insect pests.

ANATOMY

Lizards are scaly-skinned reptiles. Most of them have four legs, movable eyelids, and external ear openings, but some lack one of these features.

GECKOS

These small lizards have about 500,000 hairs on each foot that provide them with good adhesion for climbing smooth surfaces. They eat spiders and mosquitoes. Some make a clicking noise that sounds like "gecko".

OKAY

A NEW TAIL

Some lizards can detach their tails to escape from or deter a predator. After the tail has fallen off, the area heals like a wound. After about ten days a new tail begins to grow.

A LIZARD'S DETACHED TAIL GOES ON MOVING OR A WHILE TO DISIRA OR A WHILE TO DISTRACT THE PREDATOR

 The lizard detaches the end of its tail when attacked or threatened begins to heal.

GROWING BACK

 ew tail starts growing a new tail starts growing By about day 25 , the new the lizard to flick it.SIZE COMPARISON
The world's smallest lizard fits on a fingernail. The biggest weighs about $70 \mathrm{~kg}(154 \mathrm{lb})$ and can hunt down large animals.
BRITISH VIRGIN
ISLAND DWARF GECKO
$18 \mathrm{~mm}(0.75 \mathrm{in})$ long

After about 60 days, the new tail is complete. It is not exactly the same as cartilage instead of bone

BRITISH VIRGIN 18 mm (0.75 in) long

CHAMELEONS

Chameleons mainly live in trees. They have long tongues for catching insects and protruding eyes that move independently of one another. The chameleon can swivel each eye around to look at two different things at once.

COLOUR CHANGE

Chameleons have special skin cells containing tiny sacs of different coloured pigments. The lizard s moods - such as its body that triger the releas of colour from the sacs.

Protruding eyes that move in
different directions

Snakes

There are several thousand different types of snakes. Most of them are not venomous or dangerous to people, and many are beautiful, with bright colours and patterns. All snakes swallow their prey whole.

WHAT MAKES
 A SNAKE?

Snakes are cold-blooded and need outside heat, like the Sun to keep warm. A snake smells with its tongue and "hears" by picking up vibrations.

INSIDE A SNAKE

A snake's inner organs are
designed to fit in a long, narrow space. These organs are very stretchy, allowing prey to be swallowed whole.

COLUBRIDS

With their diverse colours and sizes, the colubrids make up a very large group. Few of them are venomous. Some kill by constriction.

VIPERS

Found in nearly all countries, vipers are venomous. They have squat bodies and broad heads. Some have infrared sensors under their eyes that help them hunt in the dark.

MALAYAN PIT VIPER

WESTERN DIAMOND-
backed rattlesnake

TAYLOR'S CANTIL VIPER

FER-DE-LANCE

BOAS

These include the biggest snakes in the world. Most boas live in the Americas or Africa. They kill prey by squeezing (constricting) it.

BOA

RAINBOW BOA

EAST AFRICAN
SAND BOA

COBRAS AND RELATIVES

All cobras are venomous. Some have very fast-acting poisons strong enough to kill large animals, or a human.

PYTHONS

These often very big constricting snakes come from Asia and Africa. Some types are popular as pets.

ALBINO BURMESE
PYTHON

＂灵语＂网络英语培训班长期招生中！

真正全面掌握英语（非速成，非应试），实现精彩人生！研究生和零基础都能报名！

咨询 QQ：55634101（water 老师）

正规培训，可试听，非诚勿扰！晚上和周末上课，不影响工作！

YY 语音，现场授课， 1 对 1 与小班授课可选！
网校自编教材，针对性强！学员切勿在网上传播！
网校发展中，优秀学员从优聘用！

培训简介：

1，共＂ $1+5$＂个级别的分级培训课程，针对性强，学员也可以直接选择合适级别培训，见效快；
2，学费低，并按级别单独收费，培训不达标可不限次重新免费培训，直至达标；
3，一站式培训，从零基础到高级 \square 译课程，满足不同学员的培训需求；
4，全面提高英语，全面使用英语，拒绝或哑英语；
5，每周各级别培训时长平均为 6 个小时，一般为晩上 $8-10$ 点；
6，现场授课，互动性强；课后有学习任务，需满足达标要求；
7，每个级别培训按任务为单位累积学分，学分达标则该级别达标（ 80% 通过）；
8，对每个学员负责：试听前需要参加 1 对 1 面试，面试合格后可学习老师推荐的对应级别课程。

PS：一次性支付学费有困难的学员可以分多期支付。

预备级 （发音，口语）	培训时长：预计 2 个月
	小班费用：1500元 1 对1费用：3000元
	报名要求：发音较差的各类不同基础学员，打算学习美式发音和技巧且口语听力较差的学员
	培训内容：音标，单词拼读，基础口语短句学习，基础口语和朗读技巧，地道美语技巧，文章流利朗读与地道听力技巧
	培训目标：1，能够正确拼读英语单词；2，能够标准，流利的美音朗读英语中的各类句子，文章；3，为后续级别的培训打好口语和听力基础；4，掌握大概至少 200句的美语常用句。
一级课程 （零基础培训）	培训时长： 6 个月左右
	培训费用：2800元 1 对1费用：5600元
	报名要求：通过预备级课程或者测试的学员，零基础学员，大学 4 级以下或基础较差英语已经还给老师的学员
	培训内容：基础词汇，基础语法，生活美语句型，初中级文章阅读，朗读与听力训练，常用口语句型与对话实战，基础跨文化知识与交流
	培训目标：1，具备一定的阅读和听说能力；2，能通过词典流利朗读，阅读不太难的英语文章；3，具备基础的听说，跨文化，跨语言交际能力；4，良好的语法基础； 5，为更高级别学习打下坚实基础。
	培训时长：预计 12－14 个月
	培训费用：3800元 1 对1培训费用：7900元
	报名要求：通过预备级课程或者测试的学员；具有一级课程以上基础的学员（大学英语 $4, ~ 6$ 级或以上）；听说等实战能力较差的学员（建议大部分国内深受聋哑英语毒害的 10 年以上英语学习者选择此级别学习）；

二级课程 （初中级培训）	培训目标： 1，具有一定的原版书阅读和英语写作能力，能胜任一些要求不太高的工作； 2，具备流利的国内外生活交流和听说能力； 3，具有一定的口笔译基础能力，同时能够胜任一些基础口笔译工作； 4，至少 16000 以上的单词使用量（已大于托福词汇量）和熟练的高级语法知识，为更高级别学习打好基础。
三级课程 （高级培训）	培训时长：预计12－14 个月
	培训费用：4900元 1 对1培训费用：9900元
	报名要求：灵语网校二级课程达标或具有同等级的英语使用能力与基本功
	培训目标： 1，流利阅读各类型原版书，具有较高的阅读和听说能力； 2，能够胜任对英语要求较高的涉英类工作； 3，具有中高级口笔译能力并能胜任相应的工作； 4，具有合格的英语思维能力和跨文化交际能力，实现英语自由使用和交流； 5，具备 3 万左右的词汇量，为更高级别培训打下基础。
四级课程 （母语培训）	培训时长：预计14－16个月
	培训费用：7400元 1 对 1 培训费用： 1.5 万
	报名要求：良好的口语表达和阅读能力，同时具备至少 2.5 万的基础词汇量；合格的中英双语口笔译转换能力；具有一定的英语思维和逻辑表达能力；建议为灵语网校 3 级班达标学员报名。
	培训目标： 1，英语能力超过绝大部分母语为英语的美国本科生； 2，能胜任要求很高的涉英类工作和要求较高的笔译类工作； 3，扎实的中英双母语能力，中文母语水平得到质的提高； 4，较高的中英双母语转换能力和高级跨文化交际与翻译能力； 5，为同传培训打下非常好的坚实基础。
五级课程 （同声传译）	培训时长：预计 20 个月
	培训费用： 1.7 万元 1 对 1 培训费用： 3.6 万元
	报名要求：扎实的中英双母语技能；英语基础词汇量4万以上；有志于往同传方向发展并能坚持不懈；建议基础至少为灵语网校 4 级课程培训毕业的学员。
	培训目标： 具有胜任中高级别同传会议的能力；

PS：一次性支付学费有困难的学员可以分多期支付。

> 以上培训时长均以上班族学习模式作为标准而衡量。

报名方式：QQ：55634101（water 老师）

Water 老师简介：男， 33 岁，热爱语言及语言教学，普通话和英文发音标准。曾在北京邮电大学攻读电子工程专业，后对成为电子男无爱，专攻英语。毕业后，从事英语培训多年，并分别在一些知名英语培训机构做过培训师，多年研究英语教学法，实践经验丰富，讲究＂对症下药＂。后因和培训机构的高管在教育理念上的本质不同而分道扬镀。现单飞创业，并兼职中英同声传译。已经带过很多零基础，大学生，研究生，英语专业学生以及各类白领在职和出国人员，教学经验丰富。

更多国外英语原版书资源下载，请加 QQ 群：14097408

WHAT'S THE

DIFFERENCE?

The crocodile's snout is more pointed than the alligator's and the fourth tooth on the crocodile's lower jaw sticks out when the mouth is closed. Gharials have narrow, greatly elongated jaws.

ARMOURED BODY

A crocodilian's long body and tail are covered in tough scales. The short legs allow limited movement on land. With eyes, ears, and nostrils on top of its head, a crocodilian can hunt while almost fully under water. The lungs hold enough oxygen for a 15-minute dive.

PARENTING

Eggs are laid in a nest built and fiercely guarded by the female. After the eggs have hatched, the mother usually remains with her young for a time to protect them.

Crocodiles and alligators

Crocodilians - crocodiles, alligators, and gharials - have been around since the time of the dinosaurs. They use stealth to ambush prey and their ferocious jaws to kill. These reptiles live partly in water and partly on land.

SURPRISE AMBUSH

Feeding on fish, birds, reptiles, and mammals, crocodilians are masters of the surprise attack. Small prey is swallowed whole, but larger animals must first be drowned before they can be eaten.

waits
With just eyes, ears, and tip of snout above the water, a crocodile waits almost motionless for unsuspecting prey to

2 LUNGES Without warning, the rocodile launches itself from the water and seizes its victim with powerful jaws that snap shut
around the animal.

$3 \begin{aligned} & \text { KILLS } \\ & \text { With a }\end{aligned}$
grip on its a strong grip on its prey, the
crocodile dives down beneath the water and waits for the and waits for the

CROCODILES

Found in tropical regions, these reptiles occupy both freshwater and saltwater habitats. The two largest and most dangerous species are the saltwater crocodile and the Nile crocodile.

Eggs

The young of many animals develop inside eggs, which provide protection and food. All birds and most fish and insects are egg-layers. Others include reptiles, frogs and toads, slugs and snails, and even a few mammals.

EGG SHAPES

Most commonly, bird eggs are oval-shaped. Seabirds nesting on cliffs lay pearshaped eggs, which roll in a circle but not off an edge. A few birds, including some owls, lay round eggs.

INSIDE
 \section*{AN EGG}

The developing bird, which is known as the "embryo", is cushioned inside a sac or bag full of fluid. The yellow yolk provides the embryo with most of its food but the albumen, or "white", also gives it protein and water.

BIRD EGGS

Eggs come in lots of different colours and patterns, which may help to camouflage them from predators. The colours partly depend on the diet of the bird. If it eats plenty of calcium - which it might get from foods such as insects - it produces a lighter, whiter egg.

INCUBATING AN EGG

An embryo inside an egg cannot develop without warmth Parent birds provide this by sitting on their eggs until the chicks hatch out. The proces is called incubation. A mother hen such as this one will sit for 21 days.

HEN INCUBATING HER EGGS

HATCHING OUT

The pictures below show a Japanese quail hatching out of its egg. First, the emerging chick starts chipping away at the shell with its beak. Eventually, the shell cracks apart and the chick kicks itself free of the egg.

SOME BIRD SPECIES LEAVE
THEIR EGGS TO HATCH UNDER
HUGE HEAPS OF VEGETATION

STARTING TO HATCH
The young chick starts chipping through the shell.

PIPIT

RICHARD'S

RINGED CROW

ANDEAN SPARROW

CUCKOO
SHRIKE

WOOD-HOOPOE

CHIMANGO

REPTILE EGGS

Most reptiles lay eggs. Crocodiles and
tortoises have hard-shelled eggs - like birds eggs - while the eggs of turtles, snakes,

OTHER EGGS

Fish, insects, and slugs are among other egg-layers. Most produce very tiny eggs in large numbers. In some species, such as the dogfish, the eggs are held in a protective case.

CHINESE OAK SILK MOTH CATERPILLAR

SLUG

Birds

Birds occupy almost every kind of habitat around the world from hot deserts to the icy polar regions. Of the 10,200 species, some are larger than people while others are barely bigger than bees. All birds have feathers and most of them can fly.

mos

FLIGHTLESS BIRDS

The largest of all birds, ostriches are too heavy to fly. They escape predators by running on strong legs. The smallest flightless birds are the chicken-

WHAT IS A BIRD?

Any animal that has feathers is a bird. All birds have wings, even those species that cannot fly. Most birds also have very good eyesight and hearing.

Birds reproduce by laying eggs and many build nests.

WARM-BLOODED Like mammals, birds create thei own body heat.

FEATHERS These enable flight and also provide warmth.

TOOTHLESS BEAK Having no teeth food in a "gizzard"

FLIGHT While most birds can fly, some

INSIDE A BIRD

Birds have strong yet lightweight skeletons, and large chest muscles to power their wings. Flying burns energy and needs a lot of oxygen Birds have a series of air sacs in their body to keep up the flow of oxygen through their lungs.

CUCKOOS AND TURACOS

Turacos live only in Africa, whereas cuckoos are more widespread. Some cuckoo species trick other birds into raising their chicks by laying eggs in their nests.

OWLS

These night hunters have forward-facing eyes and see well in poor light. Fringed feathers allow owls to fly without making a sound.

TOUCANS AND WOODPECKERS

These tree-living birds have strong gripping feet, with two toes pointing backwards and two forwards.

PILEATED
wOODPECKER

PENGUINS Expert swimmers, penguins have wings that have evolved into flippers. Many species live in the icy waters around Antarctica. A few penguins live in warmer waters further north.

STORKS, IBISES, AND HERONS

These wading birds stalk prey in shallow waters. Storks and herons make lightning strikes for fish and insects, while ibises

BIRDS OF PREY Eagles, hawks, and falcons are all birds of prey. These swift predators have three things in common: hooked beaks, long talons, and superb eyesight.

PELICANS

The long-beaked pelicans, and their relatives the gannets, are fisheaters. Pelicans scoop up their catch in a large throat pouch.

BEAK VARIETY

A bird's beak reflects its diet. For example, the spoonbill sweeps its beak through water like a shovel to locate food. The sharp beak of a woodpecker is perfect for chiselling off tree bark to reach insects

IN WATER

FRUIT

WOOD

ROBING MUD AND SAND

MULTI-
PURPOSE

BABY BIRDS

Family life is usually a brief but very busy period. Most birds lay their eggs in a nest. Hatchlings need constant feeding and grow very quickly. Once baby birds have mastered flying, they leave the nest for good.

EGGS
Most birds sit on their eggs to keep them

PIGEONS AND DOVES

With their round bodies, small bobbing heads, and short beaks, pigeons and doves a

READY TO FLEDGE At two weeks, the fledglings are ready to leave the nest and learn to fly.

HUMMINGBIRDS
 AND SWIFTS

The tiny, acrobatic hummingbirds are among the smallest of all bird species. Swifts, known for their speed, can be
recognized by their very short legs and small feet.

BRAZILIAN RUBY

LUCIFER
 SWIFT

KINGFISHERS

Brightly coloured kingfishers and their relatives are mostly "sit-and-wait" predators, swooping down from perches to snatch prey

CRANES
Graceful cranes and their many relatives live in both dry and wet habitats. Cranes perform impressive courtship displays.
保

PARROTS CAN COPY MANY
WNDS, INCLUDING HUMAN
WORDS AND LAUGHTER

PERCHING BIRDS

Most birds are perching birds - their unique feet can grip even very slender branches. Many species are songbirds

Birds of prey

Also known as "raptors", birds of prey have exceptional vision, grasping talons, and a sharp, hooked beak. Found on every continent apart from Antarctica, these spectacular hunters are divided into day-flying raptors and night-flying raptors, or owls.

WHAT MAKES A BIRD A RAPTOR?
Day-flying raptors in particular have excellent eyesight that allows them to spot prey from a distance and to calculate exactly when to strike. Many owls rely more on their keen hearing. Strong feet and talons are a raptor's main tools of attack, while the hooked beak is used for tearing meat

SOARING HIGH

The large wings of some hawks and eagles allow them to soar high in the sky by riding warm air currents called thermals. Using little energy, they can glide for long periods while searching for prey

DAY-FLYING RAPTORS

As well as airborne hunters like hawks, eagles, and falcons, this group also includes the largely ground-dwelling secretary birds. Vultures, such as the Andean Condor, rarely kill prey and instead feed on dead animals.

OWL PELLETS

Owls usually swallow their prey whole. They are unable to digest fur and bones, so they bring up pellets containing these undigested remains. The tawny owl pellet below reveals that the owl had dined on voles.

letiountaruyyjal 99ppp9 ime 1 In FRONT-LIMB SHOULDER

SNAIL KITE

CRESTED CARACARA

SPECTACLED OWL

TAWNY OWL

LANNER

MISSISSIPPI KITE WHITE-TAILED KITE

PYGMY FALCON

STRIATED CARACARA

Feathers

Birds have spread to every continent on Earth, partly because of their ability to fly. Feathers play a vital role in their flight, and help birds to stay warm, attract mates, and be camouflaged. Feathers come in many shapes and sizes, and have different functions.

WHAT ARE FEATHERS FOR?

Feathers allow flight, keep birds warm, provide camouflage, and help attract a mate. In many nesting birds, an area of feathers moults to allow more heat to pass from the mother bird to the eggs.

FLIGHT Stiff wing and tail feathers aid flight.

TYPES OF

FEATHERS

Birds have two main
types of feathers: down feathers for warmth, and contour feathers for flight. The feathers grow in areas called tracts, with bare skin in between. The bare areas are hidden by the feathers.

PRIMARIES attached foathers, attaction of the

TAIL FEATHERS
For balance, braking and elevating in flight

GAME BIRDS

Game birds spend most of their time on the ground, preferring to walk rather than fly. Their flight feathers have a very pronounced curve, or camber, to provide explosive lift and quick bursts of flight.

PHEASANT

PARROTS AND COCKATOOS

Parrots use their brightly coloured feathers
to attract the opposite sex. The vivid colours may also help disguise these birds against the vibrant green of the forests where they live.

TOUCANS AND WOODPECKERS
Woodpeckers and toucans do not have any soft down feathers, even when they are chicks.

BIRDS OF PREY

There are two families
of birds of prey: falcon-like birds that are awake in the daytime, and owls that are awake at night. Some can soar for hours to look for food, others achieve great speed when they dive down to catch their prey.

OVERTS

These cover the flight
feathers of the wings and tail, providing protection and streamlining.

SECONDARIES
These flight feathers are attached further down th wing than the primaries.

FEATHER STRUCTURE

Contour feathers have stiff shafts in the centre, with vanes on either side. The vanes are made up of thin branches called barbs. These have smaller branches of barbules with hooks that hold it all together.

CLOSE-UP
This complex but strong structure holds the

HOW BIRDS FLY

A bird uses strong breast muscles
to flap its wings and fly. As it
flaps them, it increases lift,

DUCKS, GEESE,

 AND SWANSThese birds spend a lot of time in water, so their feathers are covered with an oily substance that keeps them waterproof

CAROLINA LEMON WOOD DUCK

PERCHING BIRDS

The stiff tail feathers of many of these birds help them to balance while perching on small branches and garden fences.

BLACKBIRD

SHOREBIRDS, SEABIRDS, AND WADING BIRDS
These birds have feathers that help with waterproofing and warmth. They tend to have dark feathers on their backs and white ones on their chests, to provide camouflage

OTHER BIRDS

 family has feathers suited to its habits and lifestyle. Doves and pigeons create a white powder called feather dust to keep their feathers waterproof, unlike kingfishers, which use preening oil for waterproofing their feathers. Ostriches don't fly, so don't have any contour feathers, only soft down feathers.

OSTRICH

Animal journeys

Every year, some animals move huge distances from one area to another. This is known as "migration" and may involve groups numbering millions. Such journeys are undertaken to ensure a species' survival.

WHY ANIMALS MIGRATE
Animals take long and sometimes dangerous migratory journeys when instinct tells them to move. Usually, they are seeking food, a mate, better weather, and safe places to rear their young.

KEY
\rightarrow White-bearded wildebeest (inset) They move in a circular pattern round East Africa.
\rightarrow Arctic terns
These birds fly between the North Pole and the South
\longrightarrow Atlantic salmon These fish return from the ocean to the rivers where they were born, to lay eggs.
\longrightarrow Humpback whales These whales travel from the North Pacific
to Central America.
\rightarrow European eel
These swim from European rivers to the Sargasso Sea, near the Bahamas, to lay eggs.
\rightarrow Monarch butterfly The only butterflies to make a long two-way migration each year.
\rightarrow Barn swallow
Found in almost all northern climates, these fly south in winter. European swallows fly to South Africa.

Locusts
Migrate in massive swarms (40-80 miltion locusts) when populations build too high.

MAJOR MIGRATIONS

This map shows some examples of migratory routes used by animals. There are various types of migrations. Journeys may take north-south or east-west paths between summer and winter regions, follow circular routes, or go up and down mountains. Sometimes, just part of an animal population moves, leaving the rest behind.
 REPRODUCTION Animals may migrate to find a mate, lay eggs, give birth, and
raise their young.

TO AVOID EXTREME WEATHER In harsh wintry conditions, animals may move to areas where there is more food and warmer weather.

TO AVOID OVERCROWDING When a population gets too big, animals may make animals may mak Locusts are one example.

BIRD MIGRATION

Bird migration takes place in spring and late autumn. The movement is triggered by changes in hours of daylight and temperature. Many migrating birds fly in V-shaped formations. The journey can last weeks or even months.

GETTING READY
Birds release a hormone to help them store fat in the weeks before they migrate.

NORMAL BODY FAT

RECORD MIGRATIONS

When animals migrate, they can trave astonishing distances, often without stopping for food or drink. Here are some world-record holders.

0

ARCTIC TERN
Longest round trip: $71,000 \mathrm{~km}$ (44,000 miles) This tiny bird migrates further than any other animal in the world, zigzagging between Greenland and Antarctica.

O BAR-TAILED GODWIT

Longest nonstop flight: $11,500 \mathrm{~km}$ (7,145 miles) One of these shorebirds covered this distance in eight days without a break for food.

O LEATHERBACK TURTLE

Longest recorded aquatic journey: $20,558 \mathrm{~km}$ (12,774 miles) These travel across the Pacific Ocean to the beach where they were born.

- WHITE-BEARDED WILDEBEEST
Largest land migration: Largest land migration
1.3 million wildebeest 1.3 million wildebeest $1,610 \mathrm{~km}$ (1,000 miles) in a year.

O BAR-HEADED

GOOSE

Highest journey: $7,290 \mathrm{~m}(23,9170 \mathrm{ft})$
Flying at extreme altitude, these
birds fly with only ten per cent
of the oxygen found at sea level.
They have been tracked flying for
They have been tracked flying for
17 hours without stopping.

0

DESERT LOCUST Largest air migration: 69 billion locusts in one swarm In 2004, the swarm crossed Morocco and devastated crops in parts of northwest Africa.

Rodents

There are few places in the world where rodents cannot live. Mostly small, these animals fit themselves into many different habitats, and often flourish in huge numbers. Rodents are gnawing animals that must constantly wear down their ever-growing front teeth.

WHAT MAKES A RODENT?

A compact body, long whiskers, and a long tail are common roden features, although there are many variations in this big group. Rodents teeth make them different from other animals. They have four sharp front teeth, or incisors, and just a few molars at the back of the mouth.

HOW, SQUIRRELS "FLY"

The rodent group includes the flying squirrels. As they move between trees, these animals travel through the air in what appears to be real flight. In fact, they are gliders. A flying squirrel has thin, loose skin between its legs that spreads out like a parachute to keep it aloft. To steer in midair, the squirrel moves its front legs. When preparing to land, it raises its fluffy tail as a brake.

SUITABLE BODIES

Many rodents have special body adaptions to suit their various lifestyles. These include extra-flexible joints in the feet for climbing trees, protruding teeth for digging and tunnelling, and webbed toes for swimming.
 Mole-rats dig with their sticking-out front teeth, and push the soll
behind them with their wide, flat hindfeet.

CLIMBERS Swivelling joints in their ankles make squirrels one of the few mammals firstan

SWIMMERS Beavers have webbed feet and a flat tail that is used as a rudder. Thick underfur keeps
them warm in water.

BEAVERS

There are two species of beavers: North American and Eurasian. Both are river-dwellers. They create waterways for their ow

Monkeys and apes

Like humans, monkeys and apes are primates. They use their hands as we do, placing their thumbs against their fingers to grasp things. Monkeys and apes have good vision and large brains for their size. A tail helps to identify which animals are which: most monkeys have tails, apes do not.

MOVING AROUND

Some apes, such as gorillas, spend a lot of time on the ground, while others are skilled climbers and leapers. Monkeys scamper and run on all fours, using their tails for balance or as a fifth limb.

TOOL USE

Apes are intelligent and can make and use tools. Chimpanzees have been observed using rocks to crack nuts, and making "sponges" from leaves and moss to collect water. They also push sticks into termite mounds and trees to "fish" for insects.

MONKEYS

New World monkeys live in South and Central American rainforests. They have fairly broad noses with nostrils that open sideways. Many have gripping tails. Old World monkeys live in Asia and Africa. They have narrower noses than New World monkeys and downward-pointing nostrils. Most are tree-dwellers, although baboons live mainly on the ground.

COMMON
SQUIRREL
MONKEY GOLDE
RED HOWLER MONKEY

WEEPER CAPUCHIN

PYGMY MARMOSET

NORTHERN
NIGHT MONKEY NIGHT MONKEY

COMMON MARMOSET

APES

Found in Africa and Southeast Asia, apes have a more upright body posture than monkeys and do not have a tail. Gorillas, chimpanzees, orangutans, and humans are all "great apes" while gibbons are "lesser apes".

GROUP BEHAVIOUR

Most apes and monkeys live in groups, which helps keep them safe from predators. They communicate with each other by using body language and sounds. Chimpanzees even work together to hunt and then share the food among the group.

CARE OF YOUNG
Monkeys and apes have one to two infants at a time, and may devote years to rearing their offspring.

SOCIAL LIFE
Grooming is important not only for cleaning fur, but also for bonding between group members.

\qquad

Wild cats

Sleek, stealthy, patient, and intelligent, wild cats are natural killers. Most of them hunt on their own, using their claws and teeth to catch, stab, and cut up their prey. They are athletic, with supple, muscular bodies that are well adapted to running, climbing, leaping, and even swimming. They live in various habitats across Africa, Asia, Europe, and the Americas.

CONSERVATION
The threats to wild cats var according to where they live, but the main ones are poaching and the loss of their habitat. Most of the big cats are now vulnerable or endangered.

	BENGAL AMUR LEOPARD	INDOCHINESE
TIGER	CLOUDED	

SMALL WILD CATS

More than three-quarters of the world's wild cats are classified as "small". The 30 different species have adapted to their environment their colours help them blend in. Domestic cats were derived from the North African wildcat.

KEY - Critically endangered Endangered - Vulnerable 피네N ELeast concern

FISHING CAT

BIG CATS

Lions, tigers, jaguars, and leopards are classed as cats. They all live alone, except for lions, which live in a big group known as a pride. The largest cats in the world are the Bengal and Amur tigers, which can weigh the same as 100 domestic cats.

BUILT FOR SPEED

The cheetah is the fastest land mammal on Earth it can run at $113 \mathrm{~km} / \mathrm{h}(70 \mathrm{mph})$. Strong muscles, large lungs, and a large heart mean it can take in lots of oxygen very fast and so accelerate very quickly. It has to rest after about 20-60 seconds.

1 STARTING LEAP
Acheetah can run fast over short distances only. It stalks its prey until it is very close, then suddenly rushes out of cover.

LEOPARD CAT

Lionesses do most of the hunting. pon by all that can get near enough. Youngsters usually give way to older members and all are subordinate to the males.

Each lioness has a differen three will eventually kill _ The lionesses fan out to surround their prey

Atiger's stripes are
unique - no two tigers will
ever have the same pattern

Whales and dolphins

Although they live in water, whales, dolphins, and porpoises are all mammals. At intervals, they rise to the surface to breathe in fresh air and exhale stale air through blowholes, similar to nostrils, on the top of their head.

TEETH AND FILTERS

Some whales have teeth for catching prey such as fish or squid. Filter-feeding whales have comb-like plates called baleen hanging from their upper jaw. As they swim, baleen whales gulp water and the plates trap tiny prey.

baLEen whale
Toothed whale
Row of conical teeth

WHALES

There are several distinct groups of whales. Some are baleen whales, or filter feeders. These include the blue whale, the biggest mammal in the world. Others have teeth and sometimes beaks as well. Depending on type, whales can be found from coastal waters to the deep ocean.

FROM LAND TO SEA

Fifty million years ago (MYA) the ancestors of whales were not swimming in seas but living on land and walking on four legs. These animals gradually started spending more time feeding in water. Slowly, their bodies changed and whales eventually left dry land forever.

DORUDON (38 MYA) Able to swim well, this early whale had front flippers, tiny hindlimbs, and a flexible tail. The nostrils had shifted to the top of the head as blowholes.

THE BLUE WHALE CAN MEASURE UPTO 30.5 M (100 FT) LONG

MODERN WHALE
Perfectly adapted for ocean life, the whate has a streamlined body, powerful flippers, and a flat tail to aid propulsion. the hindlegs have vanished.

BREACHING

Whales often leap high out of the water and plunge back with a large splash. This is called breaching, and scientists are not sure why whales do it. Possibly it is a form of signalling or helps to dislodge parasites.

 BOTTLENOSED WHALE

BLAINVILLE'S BEAKED WHALE

SHEPHERD'S BEAKED WHALE

GRAY'S BEAKED WHALE

STRAP-TOOTHED WHALE

GINKGO-TOOTHED BEAKED WHALE

Outgrowths of hard skin
develop on head

PORPOISES

Most of this group are smaller and rounderbodied than their rwelatives. Porpoises are usually found in shallow seas near the coast.

Animal skeletons

Without a skeleton, most animals would be a shapeless blob. Vertebrates, such as mammals and birds, have a strong internal skeleton. Many invertebrates, such as insects, have a protective external skeleton, called an exoskeleton.

WHAT DOES THE SKELETON DO?
A skeleton provides an animal's body with strength, shape, and protection. Muscles are attached to the bones, and joints between bones enable movement. Bones also store vital minerals and produce red blood cells

SUPPORT The skeletal framework gives shape and strength to an animal's body

PROTECTION Bones such as the ribcage and skull protect vital organs from injury.

MOVEMENT Bones act as levers and are points of attachment for the muscles.

INNER SKELETONS

All vertebrates have an inner skeleton that supports the body and protects the organs. The skeleton is usually

OUTER

Several groups of
invertebrates have an armour-like external skeleton. The rigid casing protects inner organs from damage and possibly from predators. When insects or creatures such as crabs grow, they shed their exoskeleton and make a new one.

DRAGONFLY
*memers LARVA

ECHINODERM

 SKELETONEchinoderms include marine invertebrates like sea urchins and starfish. They have an exoskeleton made of plates, covered by a thin layer of skin. When these animals grow, their skeleton grows

HYDROSTATIC SKELETON

The shape of many soft-bodied invertebrates is supported by a water-based "skeleton" consisting of a fluid-filled cavity surrounded by a muscular wall.

SEA URCHIN

Dogs

People and dogs have been together for at least 12,000 years. All dogs are descendants of grey wolves that left the wild for the camps of prehistoric hunters. Since those distant times, hundreds of different dog breeds have been created in all sizes and types.

CLOSE TO WOLVES
After centuries of change, most dogs are no longer at all like their wolf ancestors. Just a few are still close to the original wolf form. Some are

BODY DESIGN

Dogs can be big or small, tall or short, shaggy o hairless. The variations are many, but the basic body design of a dog is the same for all.

EVOLUTION

There are around 500 million dogs worldwide. All of them are related to each other through their ancestor, the grey wolf.

DOGS

People began o breed dogs or specific purposes and in doing so changed and standardized heir form.

TERRIERS
Bold and lively, terriers come in many differen sizes and types. They are strong-willed and must be trained proper to prevent bad habits, such as chasing other pets. The favourite game of many terriers is digging holes.

GUNDOGS
developed to work with hunters. Some are used for locating prey. Other gundogs drive game bird out of cover and pick up those that are shot

KEEN NOSES

The nose of a dog is packed with hundreds of millions of smell sensors. These pick up detailed messages about the world.
 SMELL SENSORS (IN MILLIONS)

EARS

There are a
large variety of dog ear shapes. Most dogs have good hearing, and pointy-eared dogs hear better than droopyeared breeds

A DOG'S-EYE VIEW
Dogs have a wider field of vision than humans, so can see more without moving their heads. They see detail clearly, have good 3-D vision, and can see movement at long range.
$\begin{array}{ll}\text { Range seen } & \text { Range seen } \\ \text { by left eye }\end{array}$ by left eye

Range seen

ANGE OF VISION

BEHAVIOUR

 When pet dogs do things such as stopping to mark a tree, they are behaving as a wolf would in the wild. Dogs and wolves also use the same body language.

HOWLING
Dogs don't howl often They howl if they are shut in alone, possibly because they want company.

YAWNING Yawning is a calming signal. Dogs yawn to eflect inreats and avoid conflict.

MARKING TERRITORY Dogs leave o communicate with other dogs.

DIGGING Dogs dig to bury things and to reach animals that live underground.

SCENT HOUNDS
With the best noses of
all dog breeds, scent
hounds have been used for centuries to track prey. They have strong hunting instincts and some work well in a pack.

COMPANION

 DOGS
Many breeds, most of

 them small, have bee specially produced to make good companions. They are designed to have appealing looks and affectionate natures

CROSSBREEDS
Some dogs are the result of a planned cross betwee two recognized breeds Dogs with unknown parentage are called mixed breeds

Cats

Tens of millions of pet cats are kept worldwide. Some of these are pedigrees - breeds "designed" with a special look, such as a striking coat pattern or long hair. Most people love cats just for their appealing personalities and independent ways.

AGILE BODY

Cats are built for speed and agility. A bendy spine and loose-fitting skin allow them to twist and stretch in all

TONGUE Tiny barbs on a cat's tongue give it a rough texture. This is useful for grooming and for licking meat from bones
 meat from bones.
fast, leap high, and climb.

TAIL LANGUAGE
A cat uses its tail to give out messages about its feelings. Learning to read this "language" helps us to understand cats.

A MOTHER CAT HOLDS HER TAIL UPRIGHT AS A SIGN TO HER KITTENS TO FOLLOW HER

TRUE OR FALSE?

Cats are mysterious animals.
It is not surprising that people wonder what to believe about them. These are some popular sayings

CaTS have nine lives False. Cats are good at landing on their reet after a but they have only one life.

CATS SPEND MOST OF THEIR TIME SLEEPING
True. Even an active cat
about two-thirds of its day.

black cats
BRING BAD LUCK
False. This is folklore that is repeated in many regions. Some people ray lack cats are lucky.

cats can be rightPAWED OR LEFT-PAWED True. Female cats are more likely to use the right paw while male cats tend to use the left

CATS USE THEIR WHISKERS FOR BALANCE
False. Cats' whiskers are "feelers" for finding the

SHORT-HAIRED CATS

The first cats to be kept as pets, probably about 4,000 years ago, were short-haired This type is the favourite with cat owners today. Colours and markings show up clearly on short hair and the coat is easy to groom.

KHAO MANEE

PLEASED/EXCITED Pointing straight up and quivering.

WATCHFUL Twitching slightly from side to side.

READY TO ATTACK Held bristling

ANXIOUS Upright and fluffed out.

KITTENS

helpless, kittens turn into cats in a very short time. At about 10 weeks old they no longer rely on their mother. They can wash themselves, climb, jump, and hunt pretend prey.

LONG-HAIRED CATS

These cats are shaggy, silky, or fluffy, depending on type. Some longhairs, such as the Persian, have an immensely thick underlayer to their coat that needs daily brushing and combing.

NORWEGIAN FOREST CAT

Horses

People are thought to have first tamed wild horses for riding and pulling loads around 6,000 years ago. Until modern times, the horse was the fastest form of transport available and an essential part of farming life. Today, horses are mostly used for leisure riding and other sports. There are hundreds of different breeds of all sizes.

NAMING PARTS

The various parts of a horse's body have special names, which riders and other people who work with horses always use. These parts are often referred to as the "points" of a horse.

EVOLUTION OF THE HORSE

 Forerunners of the horse first appeared 55 million years ago (MYA). These animals, about the size of a small dog, looked very different from modern horses. The pictures here show some of the stages of the horse's evolution.

DUCKS AND GEESE
These birds are kept for meat and eggs, and sometimes their soft downy feathers are used for quilted bedding and clothing. Large and noisy, geese are wary of anything suspicious and make very good "watchdogs"

WHITE PEKIN DUCK INDIAN RUNNER DUCK

EMBDEN GOOSE

TOULOUSE GOOSE

CHICKENS

Farmers around the world raise about 50 billion chickens a year. Some birds are reared for their meat and others as egg-layers.

BUFF ORPINGTON

Farm animals
Many animals that were once wild are now reared on farms to provide us with food or materials. Some farms specialize in one type of animal - for example, cows, pigs, or chickens - while others rear a variety of livestock.

CATTLE

There are many types of cattle, some kept for milking, others for providing beef. After thousands of years of careful breeding, domestic cattle look very little like their wild ancestors.

THE FIRST FARM ANIMALS
Farming developed over
thousands of years, as people gradually learned which animals could be useful to them. They also found out how to handle the larger, more dangerous ones such as horses and camels. The dates when most animals were first

Forest

About 30 per cent of the world's land area is forest. These large areas of trees form dense canopies, which restrict the amount of light that reaches the ground. The types of trees in the forest vary with the climate, but all are home to a range of plants and animals.

WHERE ON

EARTH?

Forests grow wherever the climate is warm and rainy enough to support large numbers of trees. This allows forest of different types to grow on every continent, except Antarctica - from the hot, tropical rainforests near the equator to the cooler, snowy forests in the Arctic region

BIODIVERSITY

Every natural forest has a variety of trees and other plants, and provides homes for many animals. In regions with cold winters and warm summers, many trees lose their leaves in winter. Animals survive by lying low or moving somewhere warmer, but the new spring growth feeds masses of insects that support birds

TYPES OF FORESTS
Some forests contain many different
species of trees, while others contain large groups of the same type. In some parts of the world, trees need special adaptations to survive cold, hot, dry, or wet seasons.

TEMPERATE DRY
These forests have These forests have
hot, dry summers and mild, wet winters. Trees
can be evergreen or deciduous.

TEMPERATE DECIDUOUS A deciduous tree has large, thin leaves that make food in summ
In winter, when the weather is cold and there is little sun, deciduous trees shed their leaves.

BOREAL EVERGREEN In cold regions, the summer is too short for deciduous trees to grow well. Here, most of the trees are conifers, with tough needle-shaped leaves that are resistant to the cold.

Rainforest

Tropical rainforests grow in regions that are always warm and wet, so trees and other plants can grow, flower, and produce seeds and fruit all year round. The trees provide homes and food for an amazing variety of animals, with more different species than anywhere else on Earth.

WHERE IN THE WORLD?
Tropical rainforests grow near the equator. The climate here is hot and wet all year round, and has no cold winters or dry summers. The biggest areas of rainforest are in Central and South America, Central Africa, Southeast Asia, and New Guinea. There are smaller patches in Madagascar, India, and northern Australia.

THE AMAZON TROPICAL
RAINFOREST IS THE
LARGEST IN THE WORLD

DEADLY LIFE IN

- BRAZILIAN

WANDERING SPIDER
This big, long-legged hunter is the world's most deadly spider.

O BULLET ANT

Native to Central and South America, this giant ant has such a painful sting that people say it feels like being hit by a bullet from a gun.

TYPES OF RAINFORESTS

The nature of rainforests depends on where they grow. The tallest trees grow in the warm lowlands, while smaller trees and different types of plants grow higher up in the mountains where the climate is cooler

LOWLAND RAINFOREST The warm, wet
lowland rainforest lowland rainforest has the most plant and animat life, and
the richest variety of species.

CLOUD FOREST Mountain forests are often hidden in the clouds. are always wet and are always wet and
covered with mosses

FLOODED
RAINFOREST
Every year, forests
near rivers become
flooded. The trees are surrounded by water inhabited by fish and turtles.

LOSING THE

 RAINFORESTSAt least half the world's rainforests have been cut down for timber or to make way for farms. An area the size of a football pitch is cut down every second. If people carry on doing this, the forests will disappear

Savanna

Tropical regions of the world that are too dry for dense rainforest support open grasslands with scattered trees are known as savannas. In the tropical wet season, they are lush and green, but for half the year they are hot, dry, and scorched by wildfires.

WHERE IN
 THE WORLD?

Tropical grasslands form in warm regions near the equator that have long dry seasons. They include the African savannas, and similar grasslands in South America, India, and northern Australia.

UNDER THREAT

The wild animals and plants of the savanna are threatened by poaching habitat loss and fragmentation, farming, and climate change. HUNTING
Illegal hunting of savanna animals such as elephants, rhinos, and gazelles is endangering some species. These animals will become extinct if it continues
I

OVERGRAZING
Many farmers keep goats and cattle on the savanna. If there are too many animals, they eat all the wild plants, and the grassland will turn into a barren desert

FARMING

More of the savanna is being turned into farmland. Almost half of the wild tropical grassland in South America is now planted WATER LOSS
Farm crops need regular watering to survive the tropical dry season. The water is taken from natural sources, so there is not enough left for wild animals and plants.

CLIMATE CHANGE

Global climate change may result in more grasslands turning to desert. But it may also cause some rainforest regions to dry out and become savanna grasslands.

flooded savanna FLOODED SAVANNA
Much of the Llanos in South America in south America
floods in the floods in the
rainy season.

LIFE IN THE SAVANNA

The plants and animals of typical savannas are adapted to survive months without rain. Many of the plants are able to avoid losing too much moisture, and the animals learn where to find supplies of vital drinking water.

BROWSERS AND GRAZERS

The plant life of the savannas provides food for a wide variety of animals. Some are browsers, which gather the leaves of trees and bushes. Others are grazers, which mainly eat grass and often live in big herds

AROUND

 THE WORLD
Many tropical

 grasslands are dry with just a few trees. Others are more thickly wooded, or become flooded by seasonal rains. Some have plants adapted for life on high mountains.

SHORTGRASS SAVANNA The Serengeti in east Africa is a with trees.

WOODED SAVANNA This savanna in Austratia is more

MONTANE SAVANNA Above the tree line it is cooler than in shortgrass savanna
-

HUNTERS AND
 SCAVENGERS

Powerful hunters such as lions prey on the big plant-eating animals Others, including the giant anteater, hunt insects. Scavengers eat the remains of dead animals.

REPTILES, AMPHIBIANS,

AND INSECTS

The savanna grasslands swarm with insects such as flies, beetles, and termites. There are also many species of frogs, lizards, and snakes.

Deserts

Deserts are the driest habitats on Earth, with less than $25 \mathrm{~cm}(10 \mathrm{in})$ of rainfall a year. They may be hot, cold, or coastal, depending on their geographic position, but all are dry. Desert animals and plants must be able to survive with little or no water and endure significant daily ranges in temperature.

WHERE
 IN THE WORLD?

The biggest deserts are in the hot, dry parts of north Africa, Arabia, and Australia. Other deserts have formed in Asia and the Americas, in places that are far from oceans, or cut off by mountain ranges.

TYPES OF DESERTS

All deserts share one feature - they are very dry. But they form in many ways, and each desert is different. Many are sandy, others are rocky, and a few are snowy. Some are not as dry as others, and have a lot of plant life.

HOT DESERT
In deserts such as the Sahara, heat makes any moisture dry up. These deserts are hot by day and cold by night. They can be sandy or stony.

COLD DESERT

Cold deserts are far from oceans. They are much cooler than hot deserts, with short

COASTAL DESERT
Where deserts occur by the sea they may be covered in fog but still go for years without rainfall, remaining very dry.

SAND DUNES

The desert wind can blow dry sand into heaps called dunes. When the wind loses strength, it drops the sand suspended in it. The shape the resulting dunes form depends on wind direction and sand texture.

CRESCENT DUNES
These dunes have less sand at their edges, meaning those parts of the dune move faster, giving a distinctive crescent shape.

TRANSVERSE DUNES Constant winds form long ridges of sand that look like waves on the sea. The cres

STAR DUNES
Where the wind blows from different directions, it heaps up sand in irregular shapes. These dunes can grow very big.

MAMMALS
Most desert mammals are small animals that hide in burrows during the day to avoid the heat. Larger mammals such as camels are adapted to withstand

the heat and retain water.

BIRDS
Birds are well-equipped for life in deserts, because most can fly to find water, prey, or plants that have seeded after local rainstorms. The ostrich cannot fly, but is able to walk long distances

LIFE IN THE DESERT

Only a few types of plants and animals can survive in deserts with
extremely dry climates. In some deserts a little rain falls each year these deserts provide a habitat for a wide variety of plants and animals from tiny insects to big hunters like the coyote. In parts of other deserts rain has never been recorded.

The coyote eats fruit and insects as well as larger prey

The giant saguaro cactus has a pleated to store water

INVERTEBRATES

Insects, spiders, and scorpions have hard-shelled bodies that do not dry out easily. Many can go for days without eating at all, which helps them survive where food is scarce.

Polar habitats

In winter, there is little sunlight near the cold North and South poles. In summer, the seas teem with life, which supports large numbers of fish and other animals. Many land animals live in the Arctic, but only a few tiny invertebrates live in Antarctica.

WHERE

ON EARTH?

The polar regions consist of the Arctic Ocean and nearby land, and the continent of Antarctica and the surrounding ocean. Large areas of the seas in these regions are frozen in winter.

POLAR

 REGIONSThere are two different polar regions on Earth. The Arctic is at Earth's North Pole, and Antarctica at the South Pole.

THE ARCTIC The Arctic is an icy ocean with land all around it, where animals can live.

ANTARCTICA Antarctica is an icy continent, and most of its animals live in the ocean.

POLAR SEASONS
As Earth spins, most places experience day and night. But because of the tilt of Earth's axis, the polar regions are always dark in midwinter, and stay light in midsummer This is one reason why polar winters are so bitterly cold.

NORTHERN WINTER In December, the Arctic

FOOD WEB

In the Antarctic, all the animals get their food from the sea. Tiny drifting algae (phytoplankton) feed swarms of krill, which are in turn eaten by baleen whales, seals, penguins, and birds. Fish are eaten by seals and birds, while orcas eat anything they can catch.

Arctic foxes have

LIFE IN THE ARCTIC

The Arctic has a greater diversity of life than

LAND MAMMALS
The Arctic is the only polar region with land mammals Some are summer visitors, but others such as the musk ox live in the Arctic all year round. Polar bears live mainly

collared

MARINE LIFE
Giant whales cruise the polar oceans, eating vast numbers of krill and fish. Smaller whales and seals hunt fish, squid. and shellfish.

BIRDS

Many land birds range over the Arctic, but all Antarctic birds, such as penguins, find their

Coral reef

 kinds of fish and invertebrates.
WHERE
 IN THE

 WORLD?Coral reefs grow in clear, shallow, warm water near tropical shores. Most of them lie in the western Pacific and Indian oceans.

Tropical coral reefs are the most complex of all underwater habitats. They are created by simple animals called corals that live in big colonies and have hard, stony skeletons. The coral colonies shelter an amazing variety of marine life, including many

TYPES OF REEFS

Many reefs grow around islands, forming fringes of coral in the shallow water. If an island is an extinct volcano, it gradually sinks, while the reef keeps growing upwards. This creates a barrier reef. Eventually, the island sinks from sight, leaving a coral atoll.

FRINGING REEF This tropical volcanic island is surrounded by a fringing reef. The extinct volcano slowly starts to sink.

barrier reef As the island continues to sink, the reef grows upwards, forming a barrier reef around
a ring-shaped lagoon.

BIG VISITORS

The animals living on the reefs attract big hunters such as giant groupers, sharks, and dolphins. These usually hunt in the deeper channels between the corals. Sea turtles may visit to lay their eggs in the coral sand of the lagoon beaches.

REEF FISH

The water around the coral is alive with small fish that may swim in shoals. Some live in crevices in the reefs, and slip out to feed when it is safe. Most of them feed on small animals, but some nibble seaweed.

REEF INVERTEBRATES

As well as corals, many other invertebrates live on the reefs. Sponges, sea squirts, and clams filter the water for food, while sea slugs, shrimps, and crabs search for scraps and living prey.

SCARLET CLEANER SHRIMP

GIANT CLAM

CORALS

Every coral reef is made up of many different types of coral. They include brain corals, staghorn corals, and sea fans. Each one is a colony of animals sharing a hard, stony skeleton.

Sea slug grazing
on coral

Banded sea krait (a sea snake)

LIFE IN A CORAL REEF
Reef corals have stinging cells that capture food.
They also have tiny algae living in their tissues - the coral uses some of the sugar the algae produce, and in return provides the algae with a safe environment to live in. Corals also provide food for many other types of animals - reefs swarm with colourful fish, starfish, shrimps, crabs, and even sea snakes.
the biggest types of reef coral

Sea grass growing in coral sand
_ Cloth of gold cone shell - a

Finger coral

BRAIN CORAL

Geography

Earth

Formed more than 4.5 billion years ago, Earth is the only place in the Universe known to support life. Its breathable atmosphere, liquid-water oceans, and large areas of dry land support a rich diversity of living things.

MAGNETIC FIELD
With its iron core, Earth acts like an enormous bar magnet with north and south poles. As Earth spins, swirling currents occur in the molten metal within its outer core. This movement generates a powerful magnetic shield.

The solar wind is mostly deflected by Earth s magnetic shield Earth

Magnetic shield

EARTH'S STRUCTURE

Earth is made up of many different
layers. At its centre is a hot, metallic
core surrounded by a thick
layer of solid but slowly moving rock, called the mantle. Earth's thin crust sits on top.

Over a quarter of Earth's surface is land made up of continental crust. This is thicker than the oceanic crust that occurs under the oceans

OCEAN
Saltwater oceans cover almost three-quarters of Earth's surface.

ATMOSPHERE

Earth is surrounded by a layer of gases known as the atmosphere, which gradually merge into space

HABITATS

Plants and animals live in natural environments on Earth, called habitats These habitats vary, depending on rainfall, temperature, and location.

OCEAN
The largest habitat on Earth, the ocean is home to as many as a million types of plants and animals.

CORAL REEF
Formed in clear warm shallow waters coral reefs are like beautiful underwater gardens, teeming with marine life.

POLAR REGIONS
With freezing temperatures,
the Arctic and Antarctic are the most inhospitable places on Earth.

GRASSLAND
Found on every continent except Antarctica grassland covers about Antarctica, grassland covers about
one-third of Earth's land surface.

INSIDE EARTH'S

CRUST

The rocky crust layer that makes up Earth's continents and ocean floors contains many different chemical elements. Most of the crust is formed of silicon dioxide, which consists of joined-together silicon and oxygen atoms

ATMOSPHERE

Earth is surrounded by a thick blanket of gases that make up its atmosphere. Without it, life on Earth would not exist. Around 20 per cent of the atmosphere consists of oxygen, the rest is mostly nitrogen, with just small amounts of other gases, such as carbon dioxide.

TECTONIC PLATES

Earth's crust is broken into
pieces, or tectonic plates,
that fit together like a jigsaw puzzle. These plates float on the mantle - solid but slowly moving rock with pockets of liquid magma. When the mantle moves, so do the plates.

MOVING MANTLE
Heat currents rise up from the lower mantle, cool near the surface, then sink back down.

Currents in lower
mantle rise up

MOUNTAIN BUILDING

Most mountains are "fold mountains" that have been created over millions of years by the movement of tectonic plates across Earth's surface. Many mountain ranges, such as the Himalayas, are still being pushed upwards.

THIRD FAULT FORMS Over time, a complex of fractured and buckled rock layers form a mountain range.

HIGHEST AND DEEPEST

At $8,848 \mathrm{~m}(29,029 \mathrm{ft})$, the top of Mount Everest, part of the Himalaya mountain range in Asia, is Earth's highest point. By contrast, the Mariana Trench, in the Pacific Ocean, is the deepest, reaching $10,920 \mathrm{~m}$ $(35,829 \mathrm{ft})$ below sea level.

DESERT
With sparse rain and extreme temperatures little life survives here.

RIVER AND WETLAND
Despite covering less than one per cent of Earth's surface freshwater rivers and wetland support a lot of plants and animals.

MOUNTAIN
Wildlife is plentiful on warm, lower mountain slopes, but at higher altitudes, temperatures drop, and little can survive.

FOREST
Forests are made up of the biggest plants on Earth - trees. They provide shelter and food to a vast array of life

LIFE ON EARTH

More than 3.5 billion years ago, life on
Earth began. Over time, it has evolved and diversified to suit its natural environment.

Made of single cells with nuclei, some protists can make their own food.

PLANTS
Plants use sunlight to make food, and release oxygen into the air.

BACTERIA Microscopic bacteria Microscopic bacteria Some cause diseases.

FUNG
Fungi get their nutrients from dead organic matter.

ANIMALS
Animals get their food from eating other organisms.

Volcanoes

Deep inside Earth are pockets of hot, molten rock. Now and then, this fluid surges up to the surface and pours out in a volcanic eruption. Some volcanoes stay active over millions of years, whereas others erupt only for a few years.

HOW A VOLCANO GROWS

A volcano builds itself up out of its own erupted materials, such as lava and ash. Red-hot when it flows out, this matter cools to form solid rock.

VOLCANO TYPES

Not all volcanoes have a steep "smoking mountain" shape. Other forms include shield volcanoes - which look like huge, upturned dinner plates - and small cindery cones.

LARGEST ACTIVE SHIELD VOLCANOES

LOCATION	SHAPE	SUMMIT HEIGHT	MAXIMUM WIDTH OF BASE
Mauna Loa, Hawaii		$\begin{aligned} & 4,169 \mathrm{~m} \\ & (13,677 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 95 \mathrm{~km} \\ & \text { (59 miles) } \end{aligned}$
Erta Ale, Ethiopia		$\begin{aligned} & 613 \mathrm{~m} \\ & (2,011 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 80 \mathrm{~km} \\ & \text { (} 50 \text { miles) } \end{aligned}$
Sierra Negra, Galápagos		$\begin{aligned} & 1,500 \mathrm{~m} \\ & (4,921 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 50 \mathrm{~km} \\ & \text { (31 miles) } \end{aligned}$
Nyamuragira, Democratic Republic of Congo		$\begin{aligned} & 3,058 \mathrm{~m} \\ & (10,033 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 45 \mathrm{~km} \\ & \text { (28 miles) } \end{aligned}$
Kilauea, Hawaii		$\begin{aligned} & 1,247 \mathrm{~m} \\ & (4,091 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 50 \mathrm{~km} \\ & \text { (31 miles) } \end{aligned}$

ERUPTIONS

Volcanoes have many different eruption styles. They may produce lava in short bursts, start erupting with a terrific bang, or pump out mushroom clouds of ash.

VULCANIAN
Starts with a bang

WHAT IS A VOLCANO?
A volcano is an opening in Earth's
surface through which a mixture
surface through which a mixture of gases and molten rock, or magma, escapes from an underground chambe The outflow cools and sets, shaping the volcano.

Ash cloud
Main opening
through which
magma
escapes

Magma is
called lava
when it flows
on the surface

VOLCANIC FALLOUT

An eruption blasts a lot of dangerous material into the air. Molten lava "bombs", hot cinders, rocks, and ash fly upwards then fall to the ground. Poisonous suffocating gases are also given off.

LAVA

The red-hot flow that pours from a volcano is lava - the name given to molten rock, or magma, once it reaches the surface. The hottest lavas are thin and runny, and flow a long way before cooling and solidifying. Others are thick and sticky, and creep just a short way before coming to a stop.

CALDERAS
A caldera is a vast bowl in the ground. Calderas form when a volcano comes apart during an eruption, and the surface collapses into the emptying magma chamber.

VOLCANO ERUPTS
Magma explodes upwards, emptying the inner chamber.

CONE COLLAPSES The volcano collapses into the emptying chamber.

Water may fill caldera magma chamber

CALDERA FORMS Water sometimes fills a caldera to form a lake.

FLOWS

AND SURGES
Pyroclastic flows are lethal currents of hot gas, ash, and rocks. These currents race down a volcano, destroying everything in their path. Just as deadly are billowing, choking clouds called pyroclastic surges. They contain more gas than pyroclastic flows and can move faster.

VOLCANIC ISLAND CHAINS

Beneath some ocean floors are volcanic areas, or "hotspots"
If these erupt, lava builds up until it rises out of the sea as an island. As the moving plates of Earth's surface pass over a hotspot, their paths may be marked by chains of volcanic islands.

Chain of previously erupted islands

Volcanic island
Hotspot beneath Earth's outer shell

Chamber full of molten rock, or magma

RED-HOT

Scientists are exploring ways of tapping into the huge energy produced by hot magma. One day, this could provide the world with a big new source of power.

SUPERVOLCANOES

These are the monsters, capable of eruptions thousands of times larger than those of any other kind of volcano. Luckily, there aren't many of them. Here are some of the most important.
yellowstone This map shows the vast area of North America affected in one
of Yellowstone's
ncient eruptions

Yellowstone caldera

YELLOWSTONE CALDERA
Wyoming, USA. Makes up much Wyoming, USA. Make
of Yellowstone Park.
O LONG VALLEY CALDERA California, USA. Recent uplifting of ground observed.
VALLES CALDERA
New Mexico. Hot springs are a sign
of volcanic activity.

O LAKE TOBA

Sumatra, Indonesia. World's largest
volcanic lake.
LAKE TAUPO
New Zealand. Has erupted 28 times
AIRA CALDERA
Japan. Contains a currently active volcanic cone.

WHERE IN THE WORLD?

Volcanoes emerge in clusters in just a few places around the world. There are large numbers in the area called the "Ring of Fire" that circles the Pacific Ocean. Iceland, East Africa, and the Caribbean are big volcanic regions, too.

IN SPACE

Earth is not the only body in the Solar System to have volcanoes. Some of our neighbours in space have many volcanic regions.

Volcanic eruptions on Neptune's biggest moon can last a whole year.

5 MOUNT UNZEN, 1792
Japan. Created a landslide and a tsunami
6 LAKI, 1783
Iceland. Poisonous gas killed half of Iceland's farm livestock.
7 KELUT, 1919
Java, Indonesia. Mudslides destroyed more than 100 villages.
8 SANTA MARIA, 1902 Guatemala. Ash detected $4,000 \mathrm{~km}$ (2,500 miles) away.
9 GALUNGGUNG, 1882 Java, Indonesia. Destroyed 114 villages
10 VESUVIUS, 79 CE Italy. The cities of Herculaneum and Pompeii were wiped out. An eruption in 1631 caused further deaths.

CAST OF A POMPEII DISASTER VICTIM

Earthquakes

Earth's surface is broken up into different sections, called tectonic plates. These are always on the move, and sometimes shift in ways that cause violent vibrations. Such vibrations are called earthquakes.

EARTHQUAKE-

PRONE ZONES

Some countries are mor affected by earthquakes than others because they lie on the boundaries of tectonic plates. The ten countries shown here have the highest death rates in the world due to violent earthquakes.

WHAT CAUSES EARTHQUAKES?

The plates on Earth's surface move in ways that makes one plate push
over or slide past another. If the rocky surface is not strong enough to bear
the stress, it breaks. This sends out vibrations called "seismic waves" that travel outwards from the breaking point (the focus).

FAULT LINE Line of movement on Earth s surface between two plates

EPICENTRE
Point on Earth's surface directly above the location or focus, where the earthquake begins.

FAULT TYPES

Faults are the boundaries between two moving tectonic plates. They are often the sites of earthquakes. The blocks of rock on either side of a fault can shift and slide past each other in various ways.

NORMAL FAULT
Rock on one side of the fault moves down, so it is lower than the rock on the other side of the fault.

STRIKE-SLIP FAULT
The rocks on either side of the fault move in different directions, scraping side by side.

REVERSE FAULT One block is pushed up relative to the other, so it ends up at a higher level.

OBLIQUE-SLIP FAULT The rocks on either side of the fault move sideways and up or autt move sideways and up or

SEISMIC WAVES

Two types of seismic waves created by an earthquake can travel right through Earth's interior. P-waves pass through both solid and liquid layers. S-waves, slower but more dangerous waves, move only through solid rock.

HOW SEVERE?

The Mercalli scale, below, is one way of measuring the intensity of an earthquake. For more precise estimates, scientists use the "moment magnitude" scale, which measures the amount of energy released during a quake.

 I-II

Hardly felt by people, but can be measured by instruments.

VII-vill Buildings shake badly, and tree branches break and fall.

III-IV Felt indoors as a quick vibration that makes hanging objects shake.

$|x-x|$
Buildings crack
and some fall underground pipes torn apart

$\mathrm{V}-\mathrm{VI}$ Rocking motion felt by people; also makes buildings tremble.

XII
Most buildings are destroyed; rivers are forced to change course.

MAJOR EARTHQUAKES

Earthquakes can cause terrible devastation
The following have some of the highest-ever measurements on the moment magnitude scale.
1 CHILE, 22 MAY 1960
Registering at magnitude 9.5 , this is the largest recorded earthquake. It occurred in the Pacific Ocean and caused a series of tsunamis that left two million people homeless.

2 PRINCE WILLIAM SOUND, ALASKA, 28 MARCH 1964
This huge earthquake (magnitude 9.2) caused a tsunami that rose to $67 \mathrm{~m}(220 \mathrm{ft})$ and hit Hawaii, Canada, and the USA. In the first day there were 11 aftershocks with magnitudes greater than 6.0.
3 NORTHERN SUMATRA, 26 DECEMBER 2004 This ruptured the longest fault of any recorded quake, spanning $1,500 \mathrm{~km}(900$ miles $)$ in ten minutes. More than 227,000 people were killed by the resulting tsunami.

4 HONSHU, JAPAN, 11 MARCH 2011

This 9.0-magnitude earthquake occurred off the coast of This 9.0-magnitude eartquake occurred off the coast resulting tsunami caused more than 15,800 deaths.

5 KAMCHATKA, RUSSIA, 4 NOVEMBER 1952
Registering a magnitude of 8.2 , this earthquake set off a Pacific-wide tsunami that hit Peru, Chile, New Zealand, many Pacific islands, and California, USA.

MEASURING
EARTHQUAKES
Scientists measure earthquake vibrations with an instrument called a seismometer. In various forms, the seismometer has been in use for thousands of years.

1902
Italian scientist Giuseppe Mercall invents a scale for measuring earthquakes based on observation of effects.

1925
Americans Harry Wood and James Andersons seismometer is precise enough to be used ten years later for the Richter scale.

AROUND 500,000
EARTHQUAKES ARE
RECORDED BY
INSTRUMENTS
EVERY YEAR

2015

1979-PRESENT
The moment
magnitude scale
is introduced as
a more accurate version of the Richter scale.

EARLY WARNING SYSTEMS

Early warning systems act to protect people, animals, and property by alerting people of incoming seismic waves from an earthquake. This gives people time to take cover, businesses and power stations time to make equipment safe, and emergency services time to prepare for action.

MOVEMENT DETECTED
Early warning systems quickly detect the first signs of an earthquake, estimate the location and magnitude, and calculate areas under threat.

ALERT DISPATCHEd
The time between the first alert and the arrival of strong tremors is short. Warnings are transmitted to as many broadcasting stations as possible.

EARTHQUAKE DRILL

One simple emergency drill has been proven to reduce injuries from earthquakes: Drop, Cover, Hold On. This is because most injuries come from falling objects such as lamps and glass, rather than from building collapse.

RESISTING EARTHQUAKES

While no structure can be guaranteed completely safe from earthquake damage, the buildings listed here have proven to be very resistant to massive ground shakes. CHECHEN ITZA, MEXICO
The Mayan pyramid of El Castillo at Chechen Itza is very strong as it has a base much broader than its summit.
TOMB OF CYRUS, IRAN
Built in 400 BCE , this uses "base-isolation" to survive shakes: its base moves independently of its foundations. YOKOHAMA LANDMARK TOWER, JAPAN This skyscraper has a mass damper system, sits on rollers, and is made from flexible materials.

TRANSAMERICA PYRAMID, USA
Rising to $260 \mathrm{~m}(853 \mathrm{ft})$, this skyscraper in San Francisco has foundations that reach $16 \mathrm{~m}(52 \mathrm{ft})$ into the ground.

O TAIPEI 101, TAIWAN

Stretching twice as high as the Transamerica Pyramid, this relies on a huge mass damper to resist movement.

TAIPEI 101

MASS DAMPER

One way to help skyscrapers cope with an extreme ground shake is to install a mass damper - a huge steel sphere - at the centre, suspended by cables. It moves back and forth to counter any motion by the building itself.

TSUNAMIS
When an earthquake occurs in the seafloor

The top of a large tsunami wave usually forms as it
approaches approaches
the shore

MAJOR TSUNAMIS

Tsunamis are assessed according to the size of their waves, how many occur in one event, how far they come on shore, and how much damage they cause.
1 SUMATRA, INDONESIA, 26 DECEMBER 2004
This tsunami's waves reached $50 \mathrm{~m}(164 \mathrm{ft})$ and killed more than 227,000 people, affecting 14 countries.
2 NORTH PACIFIC COAST, JAPAN, 11 MARCH 2011 Travelling at $800 \mathrm{~km} / \mathrm{h}(497 \mathrm{mph})$, the $10 \mathrm{~m}(33 \mathrm{ft})$ high waves of this tsunami forced 450,000 people from their homes.
3 PORTUGAL, 1 NOVEMBER 1755
Set off by an 8.5 -magnitude earthquake, this tsunami hit Portugal, Morocco, and Spain with waves $30 \mathrm{~m}(98 \mathrm{ft})$ high.
4 KRAKATOA, INDONESIA, 27 AUGUST 1883 Caused by the eruption of the Krakatoa Caldera volcano, this tsunami created multiple waves reaching $37 \mathrm{~m}(121 \mathrm{ft})$ high.
5 ENSHUNADA SEA, JAPAN, 20 SEPTEMBER 1498 Waves from this tsunami were powerful enough to cross a section of land separating Lake Hamana from the sea.

Shaping the land

Earth's surface changes constantly but so gradually we can hardly see it. Wind, waves, moving ice, and other forces wear away rocks and mountains and create valleys. At the same time, Earth's plates move, forming mountains and continents.

EROSION

Water, wind, and ice wear down rocks and soil. They also move the resulting materials to new places, and in doing so change the shape of the land. The process is called erosion. Natural forces cause most erosion but human activity, such as deforestation, also contributes

GLACIER
Huge ice masses called glaciers scrape away rocks and earth as they move down mountain valleys.

WIND A powerful erosive force, wind blows away the top surface of soil and wears away rock

EROSION AND DEPOSITION
Rivers and streams mould the landscape. From glacier beginnings, a river travels fast, picking up rocky debris and carving deep into valleys. The river slows but continues to erode the landscape and also deposits some material along the way. When it reaches th

GLACIERS

Icy glaciers flow through mountain valleys, reshaping them. They move slowly, usually less than $1 \mathrm{~m}(3.3 \mathrm{ft})$ a day, but are so large they carve out vast depressions in the rock and U-shaped valleys.

WATER EROSION

Helped by strong winds, ocean waves batter against coastal landforms. Dislodged rocks and pebbles are ground down and rub abrasively against headlands, cliffs, and standing rocks.

ERODED ROCK, LOCH ARD GORGE, AUSTRALIA

ARCHES AND STACKS
As waves approach a headland, they curve around, attacking the sides. In a process called corrosion, stones flung up by the waves erode the sides, causing cracks. Compressed air brought in by waves expands, enlarging cracks and forming arches and stacks.

ARCH FORMATION Waves batter the dland from both sides, ging rock and Pressure of water enters cracks
to form an arch

Water penetrates through headland creating an arch

LIMESTONE LANDSCAPES

Deep below Earth's surface are large cave systems. Rainwater, which is slightly acidic, gradually dissolves the limestone, creating cracks. Flowing water widens the cracks, forms channels, and eventually creates cave systems.
LIMESTONE WEAKENS Only rainwater can dissolve limestone. Over centuries, the slow drip limestone forming cra

CAVE SYSTEM
As water continues o erode the limestone, cracks widen to become arge cavities or caves. Rock falls help the process.

GORGE Eventually, the roof collapses, creating sinkholes. These merge to form large sunken regions called gorges.

INSIDE A CAVE

Limestone caves are wondrous places. Over centuries, erosion has created huge chambers, often containing many incredibly shaped pillars, and river-filled tunnels. Caves vary in size. Some are shallow but the deepest, in France, lies nearly 1.5 km (1 mile) below ground.

STALACTITES AND STALAGMITES

Stim, beautifuly shaped stalactites hang down from the roof of a cave. Stalagmites rise dissolves in drops of water seeping through the roof. Over time, they form fantastic shapes.

WATER SEEPS IN Mineral-saturated water drips through the cave roof. The water dries, leaving a mineral residue.

STALACTITE FORMS Water continues seeping. The residue builds up and a stalactite forms, hanging down from the roof.

3 STALAGMITE FORMS Some water lands on the floor. It dries and leaves deposits that gradually form a stalagmite.

PILLAR FORMS Over time, the stalactite and stalagmite continue forming until they join to create a pillar

OXBOW LAKES

On low-lying land, snake-like meanders may form when the course of a river bends and may eventually become oxbow lakes. Meanders have two sets of curves: one side is formed by erosion as the river erodes the land, the other side forms from deposits of silt and sediment.

WIND EROSION

Wind is a powerful erosive agent. It blows away soil, sand, and other light substances, depositing them at different locations, often sculpting new landforms Wind erosion can be destructive, particularly for farmers. Trees and terraces help protect land.

CONICAL FORMATIONS, TURKEY In some parts of the world the impact of wind has changed landscapes, eroding

SANDSTONE SWIRLS, USA
Wind, and the sand particles it carries, erode sedimentary rocks such as sandstone, creating fantastic swirls.

Rocks and minerals

The outer layers of Earth are mostly solid rock. This is easy to see where there are mountains or canyons, but much more rock is hidden under the soil and the sea. Rocks are made of minerals. They can be changed or destroyed by weather or water at the surface, or by heat and pressure inside Earth.

WHAT'S THE DIFFERENCE? Minerals are natural chemical substances that usually form as solid crystals. Each type can be recognized by its hardness, colour. and atomic structure Rocks are a mixture of minerals locked together. For example, granite is made of the minerals quartz, feldspar, and mica.

MINERAL: QUARTZ

IGNEOUS ROCKS

Formed from volcanic material as it cools down, igneous rocks are of two types. Some, such as pegmatites, form deep underground. Others, such as andesite, form when volcanic lavas cool at Earth's surface

tourmaline pegmatite

RHYOLITE

ANDESITE

PINK GRANODIORITE

PORPHYRY

SEDIMENTARY ROCKS

These rocks form mostly at the bottom of seas and lakes. They are made from grains of sand and clay worn away from older rocks by wind and water. Over a very long period of time, the grains settle into layers of mud, or sediment. These layers are buried and eventually harden into new rock.

FLINT

SHALE

PUDDINGSTONE

MINERALS

There are thousands of different minerals, though only about 30 make up most rocks They usually form from water solutions and molten rock, sometimes deep inside Earth. Some, such as diamonds, are cut and polished to make gemstones

HRYSOPRASE

Gems

A gemstone, or gem, is a mineral that has been polished and shaped by a skilled craftsperson in order to enhance its beauty. The most highly prized gems are hard-wearing and rare. There are more than 5,000 known minerals on Earth, but fewer than 100 are used as gemstones.

GEM SHAPES

Gemstones can be shaped in many ways. Some shapes, or "cuts", are very popular for rings, especially diamond rings. More than three-quarters of all diamonds today are cut into the "round brilliant" shape.

BIRTHSTONES

Some gemstones are traditionally associated with certain months of the year. It is believed to be lucky to wear the gem for your birth month.

PRECIOUS STONES

Traditionally, gems such as opal, emerald, sapphire, ruby, and diamond were named "precious" stones. This was because their rarity made them the most valuable. Today, gems are valued in several different ways. The term "precious" is outdated, although jewellers still find it useful.

SEMI-PRECIOUS STONES
Gems found in large quantities were once said to be "semi-precious" and had a lower value than rare stones. However, a gem's beauty and popularity are now also considered part of its value. Some "semi-precious" stones sell for more money than "precious" ones.

PINK-VIOLET KUNZITE

BLUE TOURMALINE

QUARTZ GEMS

Quartz is one of the most common and varied minerals on Earth. It comes in an amazing number of colours and intricate patterns.

HONEY-
LOURED CITRINE

FACETING

 A DIAMONDWhen mined, gemstones often look dull; they must be cut and polished to shine. The best way to maximize the beauty of a transparent gem is to cut the surface into a series of flat, reflective faces called facets.

1 SELECTION A gem-quality piece of rough diamond - an octahedral crystal - is selected for cutting.

ROUNDED The stone is rounded n a lathe using another diamond and the top facet, called the table, is cut

3 "MAIN" CUTS he 16 main facets or planes are then cut mid-point, or girdle.

INCREASING SHINE Thirty two facets are cut into the crown (top) and pavilion (bottom) to increase
brilliance and shine.

FINISHED BRILLIANT CUT The final brilliant cut" emphasizes the brightness of the gem

MINING
Gemstones are
found in differe areas across the world. They are sometimes brought to the Earth's surface by volcanic eruptions.

PADPARADSCHA
SAPPHIRE

WHITE SAPPHIRE

PINK TOPAZ SHERRY TOPAZ

BIGGEST GEMS

Gemstones can be huge. The Olympic Australis opal weighs $3.45 \mathrm{~kg}(7.5 \mathrm{lb})$; the American Golden topaz is $4.57 \mathrm{~kg}(10 \mathrm{lb})$; and the largest colourless diamond, the Cullinan, is $10 \mathrm{~cm}(4 \mathrm{in})$ long.

CULLINAN
DIAMOND

AMERICAN
GOLDEN TOPAZ

RUBY

MILKY QUARTZ

DUMORTIERITE IN QUARTZ

ROSE QUARTZ

SMOKY QUARTZ

ORGANIC GEMSTONES

Organic gemstones are made from animal or plant materials. For instance, coral is formed from sea creatures, pearls develop in certain shellfish such as oysters, and amber is made of fossilized tree resin.

TO PEARL OYSTER

Water on Earth

ABOUT 97 PER CENT OF THE WORLD'S WATER LIES IN THE OCEANS

Water is the most common substance on Earth's surface it fills the colossal oceans, swirls in clouds as water vapour, and falls as rain on land. It is vital to all life and is why our planet is unique: water vapour and ice may exist on other planets but only Earth has oceans of liquid water.

WATER TEMPERATURE

Deep-ocean water is permanently cold, but the temperature of surface water varies. It is warmest around the equator, where the Sun's heat is more intense. But in the polar regions, the Sun is less powerful, resulting in permanently cold water

$30^{\circ} \mathrm{C} \quad 20^{\circ} \mathrm{C} \quad 10^{\circ} \mathrm{C} \quad 0^{\circ} \mathrm{C}$

OCEAN FLOOR

The ocean floor is not just a featureless plain filled with water.
Underwater volcanoes, towering mountains, vast plains, and the deepest trenches on Earth lie hidden beneath the waves.

SALT WATER

Most of Earth's water is salty. Over millions of years, rain pouring down on the land weathered the rocks and carried dissolved minerals on its journey to the seas. The minerals included sodium chloride (common salt). This process is still happening today.

WATER CYCLE

Powered by the Sun's heat the water cycle circulates between sea, air, and land The Sun-warmed surface water is constantly evaporating lturning into water vapour). The rising vapour cools and condenses, forming clouds that may be carried over land. Here, it falls back as rain or snow, and flows over the land before the water finds its way back to the sea

SOUTHERN OCEAN

ANTARCTICA

OCEAN SIZES

This chart shows the total area covered by each ocean. The Pacific is the deepest and by far the largest ocean, covering almost half the Earth. The Arctic is the smallest, coldest, and shallowest ocean

Fants release
Fast-moving water is
cooler and clearer

Slow-flowing murkier water

MAN-MADE LAKE Some lakes are man-made to provide a reservoir of clean water for homes and industry, or to create hydroelectricity. -

Rising water vapou cools and forms louds made of tiny droplets of water

Some of the water evaporates and rises into the air as water vapour

WATER POWER

Earth's essential resource can move with considerable force, and modern techniques have been developed to harness this incredible power into energy

HYDROELECTRIC Hydroelectric dams are built to conver a river s kinetic of movement) into electrical power.

Length: $6,378 \mathrm{~km}(3,964$ miles) China's Yangtze River is the world's deepest river as well as the third-longest river.

4 MISSISSIPPI-MISSOURI Length: $5,970 \mathrm{~km}$ (3,710 miles) The Mississippi and Missouri river combine to form North America's longest river system
5 YENISEI
Length: 5,539 sq km (3,445 sq
miles) The Yenisei River starts in Mongolia and flows through Russia.

TIDAL SURGE Tidal barrages work in a similar way to hydroelectric dams, generating power from rising and falling tides.

Climate and weather

Sunshine, air, and water interact to create the constantly changing conditions we call weather. Weather can change fast within a day and slowly from season to season. The average weather pattern in one place is what makes up its climate.

WORLD'S CLIMATE

The world is divided into climate zones, each one with a pattern of temperature and rainfall, and distinct vegetation. They range from a hot and wet climate near the equator to a cold and dry one at the poles

Hot, with rain all year
[Hot, with a dry and a wet season

- Hot, with one rainy season

EHot desert
Cool coastal climate
Warm, with winter rain
E Cold, with warm summers
Very cold and dry
Mountain climate

SEASONS

Seasons differ in the northern and southern hemispheres due to a tilt in Earth's spin axis. In summer, the
hemisphere tilted towards the Sun has longer, warmer days. \qquad

CLIMATE CHANGE
Climate is made up of interactions between the land, ocean, and atmosphere. Human activity can also alter these interactions and cause climate change.

WHAT IS CLIMATE?

A climate is the average weather pattern in an area, influenced by factors such as the region's distance from the equator.
 Places tend to be colder the further they are from the equator.

PRECIPITATION There are zones of high and low rainfall around the Earth.

ATMOSPHERIC

CIRCULATION

WEATHER SYSTEMS
Local air masses have their own temperature, moisture content, density, and pressure. A weather front occurs when one air mass meets another.
 Cold air is replaced by warm air, which slowly rises to form clouds and then rain as the air cools. heavy rain.

Polar easterlies blow away from the North Pole

Air is always on the move, and this creates the circulation of the atmosphere around the globe. Hot air close to the equator is carried to high latitudes, and cool air is returned to the tropics. In each hemisphere, three "cells" with separate circulations create winds that blow from specific directions. These in turn produce surface currents in the oceans.

Subtropica
jet stream flows at about $30^{\circ} \mathrm{N}$ all year round

Polar-front jet stream moves in different seas in

POLAR CELL
Cold air at the
pole flows south
Winds produced by
Ferrel Cells flow from the west

Northeasterly trade winds

HADLEY CELL
Moist air rises
at the equator
and subsides at
the subtropics.

FERREL CELL
Air rises high then divides some flowing to the poles and some towards the equator.

Roaring
forties wind

PRECIPITATION

All precipitation is simply falling moisture. Whether water falls from a cloud as rain, hail, or snow depends on how cold the air is.

WIND

Air moving between high and low pressure areas is called wind. Wind speed - from still air to a hurricane - is measured on the Beaufort scale.

SNOW
Snowflakes are clusters of frozen water droplets.

CLOUDS

All clouds fall into three main groups, although each type has many different shapes. Cumulus form pillowy heaps; stratus have flat layers; and cirrus are wispy streaks.

RECORD-BREAKING WEATHER

Some places have extreme climates, or weather events that are talked about for years

O WINDIEST

The fastest wind speed in a tornado was $450 \mathrm{~km} / \mathrm{h}(280 \mathrm{mph})$, recorded at Wichita Falls, USA, in 1958.

O HOTTEST

The hottest land-surface temperature ever recorded (by satellite measurement) was $70.7^{\circ} \mathrm{C}\left(159.3^{\circ} \mathrm{F}\right.$ in the Lut Desert, Iran, in 2005

COLDEST

The coldest recorded temperature was $-93^{\circ} \mathrm{C}\left(-136^{\circ} \mathrm{F}\right)$, measured in Antarctica's eastern highlands in 2010.

WETTEST

The highest rainfall recorded in one day was $18.25 \mathrm{~cm}(71.9 \mathrm{in}$) in Foc-Foc Reunion Island, in the Indian Ocean in 1966, during a tropical cyclone.

DRIEST

Arica, Chile is the populated area with the lowest average annual rainfall in the world at $0.76 \mathrm{~mm}(0.03 \mathrm{in})$.

ARICA, CHILE

HOW CLOUDS FORM

WATCHING THE WEATHER

Weather stations are at work all over the world, gathering information about local and global weather patterns. They use a range of instruments from simple thermometers and rain gauges to weather balloons and satellites, which use sensors to monitor Earth's atmosphere.

DOPPLER RADAR
This type of radar uses microwaves to track moving bands of rain

WEATHER BALLOON
Helium-filled balloons carry sensors high into the atmosphere.

SATELLITE
Satellites orbit from pole to pole or sit above one region.

Extreme weather

Tornadoes, hurricanes, and flash floods destroy homes and countryside. Long dry spells cause water shortages and parched crops. There have always been episodes of extreme weather, but now it seems likely that the increase in freak events all around the world is due to climate change.

CAUSES OF
EXTREME

WEATHER

The Sun's heat is a key factor creating excessively high and low atmospheric pressure that can lead to extreme weather conditions. Dust from volcanoes can cause major disturbance, and global warming may play a part.

GLOBAL WARMING Since 1970 global temperatures have risen by $0.5^{\circ} \mathrm{C}$
$\left(0.9^{\circ} \mathrm{F}\right.$), adding heat that may alter weather patterns.

WHAT IS EXTREME
 WEATHER?

Many parts of the world experience wide variations in their weather, so when does it become extreme? In India torrential monsoons are normal, as is a big freeze in the far North Put simply, extreme weather is weather that is windier, hotter, colder, wetter, or more destructive than usual.

THE USA HAS THE MOST TORNADOES IN THE WORLD ABOUT 1,000 EVERY YEAR

DUST STORM In very dry places, sand and soil is picked up in the wind that grows into

MONSOON

Massive monsoon winds bring torrential rain to subtropical regions in summer. This rain is essential for crops to grow. The winds change direction in winter to bring dry, cooler weather.

The South Asian monsoon blows from the Indian Ocean, bringing rain across India.

WINTER

Fine, dry weather spreads across India when the South across

DROUGHT
HEATWAVE
During a heatwave temperatures soar, eservoirs dry up, and

THUNDERSTORM Thunderclouds form in hot, humid weather and lightning, and thunder.

If there is high pressure for long periods, no clouds form and there is

MONSOON These torrential rains that last for weeks are just seasonal weather in subtropical regions.

SEVERE FOG

FLOOD Too much rain in a short time may cause flash floods in valleys and near rivers and the sea. The thickest fogs occur in poltuted areas. diny droplets of water settle

HAILSTORM
 Showers of large
hailstones can break glass and leave drifts of ice.

tornado These twisting columns of wind can flatten houses and pick up vehicles.

SNOWSTORM A snowstorm is a rapid fall of snow, 15 cm (6 in) deep or more, tha

hURRICANE The Earth's most powerful weather systems bring huge winds and rain.

COLD WAVE This dramatic dip in emperature to well threaten lives.

THUNDERSTORMS

In hot, humid weather, an enormous cloud called a cumulonimbus can rapidly build up. This towering cloud brings gusty winds, torrential rain, hail, and lightning. Flashes of lightning happen after droplets, ice crystals, and hail in the cloud become electrically charged. The flashes superheat the air, creating claps of thunder.
 lightning flashes from type of lightning flashes from cloud to
cloud then disappears in the air.

CLOUD TO GROUND Electricity in the lightning joins currents rising from the ground.

RIBBON LIGHTNING Return strokes flowing back up the first strok create a ribbon effect.

SHEET LIGHTNING
SHEET LIGHTNING inside a cloud looks like a sheet of light.

SOLAR HEAT The intensity of the Sun fluctuates day to-day and its heat causes changes in atmospheri

AIR PRESSURE Low atmospheric pressure causes storms and strong winds. Prolonged high pressure can cause drought.

EXCITING WEATHER PHENOMENA
Weather can produce some amazing phenomena and rare sights.

0

SPRITES, ELVES, AND JETS
Sprites and elves are dancing red lightning flashes in the sky. Jets are cones of blue light on thunderclouds.

O BALL LIGHTNING

This glowing orb lasts for only seconds. It may be caused when elements in the soil
vaporize and react with oxygen in the air.

O KATABATIC WINDS

These winds occur at night on mountain slopes. Dense, cold air is

NONAQUEOUS RAIN

Spiders, frogs, and even jellyfish can be whipped up in strong winds and then fall as rain.

0

ST ELMO'S FIRE

This electric spark is like the glow in a plasma ball but it occurs naturally on things like masts and lampposts during thunderstorms.

GIANT HAILSTONE

This whopper fell in Vivian, South Dakota, USA, during a July storm in 2010. Hailstones can gather ice layers as winds in storm clouds whip them upwards again and again.

RECORD HAILSTONE This hailstone weighed $1 \mathrm{~kg}(2.2 \mathrm{lb})$ and was 20 cm 8 in) across - three times the size of a tennis ball.

HURRICANES

Hurricanes are violent tropical storms that develop over a warm ocean. Up to $4,000 \mathrm{~km}$ (2,500 miles) across, with winds of more than $300 \mathrm{~km} / \mathrm{h}(185 \mathrm{mph})$. they can leave a trail of destruction across islands and coastal regions.

AIRFLOWS the eye, then cools and descends.

HURRICANES USUALLY HAVE GIRLS' OR BOYS' NAMES BUTE SOME ARE NAMED AFTER ANIMALS, OR EVEN AFTER

WARM, MOIST AIR Heated by the ocean and rises upwards.

THUNDERSTORMS
At first, clusters of hunderstorms form high hunde storms form

DEPRESSION
A depression develops, drawing in warm surface drawing in warm surface

3
TROPICAL STORM As the winds spin faster clouds rise high and produce
torrential rain.

Environment in danger

Pollution, deforestation, and the burning of fossil fuels are all changing the environment and making it difficult for many species of plants and animals to survive. However, there are plenty of ways to slow down these harmful effects on the environment, from thinking carefully about what can be recycled to finding new, greener sources of energy.

GREENHOUSE EFFECT

Some gases, such as carbon dioxide, make the atmosphere behave like the glass of a greenhouse, trapping solar heat. This process, which keeps Earth at a comfortable temperature, is called the "greenhouse effect"

global warming
Burning fossil fuels like coal and oil releases more greenhouse gases into the atmosphere, warming the planet

GLOBAL WARMING

The warming up of the Earth may sound like a good thing at first, but it actually has severe consequences. Even a tiny shift of one or two degrees in temperature can change the balance of the planet and eventually lead to the loss of wildlife habitats, farmland, and even human lives.

SEA-LEVEL RISES As the ice in polar regions melts and sea levels rise, coastal land and homes will be lost.

EXTREME WEATHER
Global warming leads to destructive storms, floods, and droughts.

OCEAN BECOMES MORE ACIDIC Sea creatures, including coral reefs, are dying as their environment changes.

DESERTS EXPAND
An increase in global temperature will lead to more desert areas, destroying habitats and farmland.

POLLUTION

Human activities cause extensive pollution around the world every day. The environment may be affected on a small scale, or pollution may contribute to wider problems, like the greenhouse effect. Pollution affects all forms of life on the planet, from animals on the land to plant life in the sea.

PESTICIDES
Chemicals used by farmers on their crops can wash off fields and into nearby water sources

RUBBISH
Most rubbish is buried in the ground in landfil sites. It can release
dangerous chemicals and gases.

CHEMICALS
Chemicals are

$$
\begin{aligned}
& \text { Chemıcals are } \\
& \text { released into water }
\end{aligned}
$$

$$
\begin{aligned}
& \text { released into wate } \\
& \text { from household }
\end{aligned}
$$

$$
\begin{aligned}
& \text { cleaning products } \\
& \text { chen }
\end{aligned}
$$

FUEL
Cars powered by ossil fuels release greenhouse gases from their exhausts.

RENEWABLE
 ENERGY

Fossil fuels provide most of the world's energy, but this has serious environmental impacts and these fuels will become more scarce. There are other sources of cleaner, renewable energy that can be used instead.

WIND Wind can power turbines that convert the wind energy into
electricity.

SOLAR Energy from the Sun is caught by solar panels and turned into electricity.

hydroelectric When water is channelled through a dam, turbines are
turned, which turned, which
creates energy.

GEOTHERMAL Cool water is pumped underground through pipes, to absorb the Earth's heat.

biofuels Fuel can be produced from organic matter, ke plants, which are burned to provide energy

WOOD Specially grown wood can be burned for heat and light. Trees must be

Our physical world

Most of Earth's surface is covered in water. The rest is occupied by seven vast landmasses, called continents: Europe, Africa, North America, South America, Asia, Australasia/ Oceania, and Antarctica. The tilt of Earth's axis and its orbit of the Sun means that some places are much hotter and drier than others.

SURFACE AREA

The entire surface of the Earth is $510,066,000 \mathrm{sq} \mathrm{km}$ $(196,937,000 \mathrm{sq}$ miles). Water makes up more than 70% of the surface area, most of which is salt water in the oceans.

THE CIRCUMFERENCE OF THE EARTH AROUND THE EQUATOR IS $40,075 \mathrm{KM}(24,901$ MILES $)$

CONTINENT SIZES

Tens of millions of years ago, all land on Earth was joined together in one huge continent called Pangea. Over time, this broke apart and the continents we know today gradually moved to their present locations

LATITUDE AND LONGITUDE

The equator is an imaginary line that divides the Earth into northern and southern hemispheres. Latitude shows how far north or south a location is in relation to the equator. Longitude gives the east/west position from the prime meridian, which runs between the North and South Poles through London, England.

KEY
elevation
 30,335,000 sq km
(11,712,434 sq miles)

EXTREME PLACES

The place with the hottest average temperature on Earth is Dallol in Ethiopia, at $24.4^{\circ} \mathrm{C}\left(93.9^{\circ} \mathrm{F}\right)$. The place with the coldest average temperature, measuring $-58.3^{\circ} \mathrm{C}$ $\left(-72.9^{\circ} \mathrm{F}\right)$, is the highest point on the East Antarctic Ice Sheet, called Dome A. Mawsynram in India is the wettest place in the world, with an average annual rainfall of $1,187 \mathrm{~cm}$ (467 in). The driest place is the Dry Valleys in Antarctica, which receive no rain, snow, or hail.

DRIEST PLACE: DRY VALLEYS, ANTARCTICA VALLEYS, ANTARCTICA

HOTTEST PLACE: DALLOL, ETHIOPIA

WETTEST PLACE: MAWSYNRAM, INDIA

A

COLDEST PLACE: DOME A, ANTARCTICA

TALLEST MOUNTAINS

Slow, but gigantic, movements in Earth's crust form mountains.
The tallest mountain range is the Himalayas in Asia, which contains the en highest mountains in the world. The longest mountain range is the Andes in South America, stretching for $7,200 \mathrm{~km}$ (4,500 miles).

Our political world

There are 196 independent countries in the world today, all differing from each other in size, shape, population, language, government, and culture. The size of a country, its boundaries, and natural resources, such as oil and gas, are just some elements that affect both its internal organization and its relationship with other countries.

POPULATION

There are more than 7 billion people in the world today. United Nations' estimates of what the population will be in 2040 range from about 8 to 9.7 billion. Some areas of the world are more populated than others because of their climate, terrain, and natural and economic resources. Over half the world's population live in cities, most in Asia, as a result of mass migration from rural areas in search of jobs.

MEGACITIES

A megacity is an urban area with more than 10 million inhabitants. The top five megacities by population are in Asia.
TOKYO
Japan: 37,843,000

3 NEW DELHI
India: 24,998,000
MANILA
Philippines: 24,123,000

SEOUL

South Korea: 23,480,000

TIME ZONES

The world is divided into more than 24 time zones. From the prime meridian (0° longitude), which runs through Greenwich, London, for every 15° you move west or east, you generally lose or gain an hour. At the equator a day is about 12 hours year round. Moving away from the equator, the day can increase to 24 hours or decrease to zero, depending on the time of year. Countries on similar latitudes have the same day lengths.
counting time
The time zone change is counted The time zone change is counte
at 15° intervals, because Earth at ${ }^{\text {atates } 15^{\circ} \text { each hour. }}$

EUROPE

BIGGEST AND SMALLEST COUNTRIES

Covering a vast expanse of land, the Russian Federation is the world's largest country. It has 11 time zones and shares land borders with 14 other countries. Vatican City, the centre of the Catholic Church, is located within the Italian city of Rome and is the world's smallest country.

BIGGEST COUNTRIES

1 RUSSIAN FEDERATION
17,098,242 sq km $16,001,668$ sq miles)
2 canada
9,984,670 sq km [3,855,103 sq miles)
3 UNITED STATES
4 china
9,598,094 sq km (3,705,845 sq miles)
5 bRAZIL
$8,514,877$ sq km ($3,287,612$ sq miles)

SMALLEST COUNTRIES

vatican city
$0.44 \mathrm{sq} \mathrm{km}(0.17 \mathrm{sq}$ miles)
2 monaco
$2 \mathrm{sq} \mathrm{km}(0.7 \mathrm{sq}$ miles)
3 NAURU
21 sq km (8 sq miles)
4 tuvalu
26 sq km (10 sq miles)
5 SAN MARINO
61 sq km (24 sq miles)

Asia

The largest of Earth's seven continents, Asia occupies one-third of the world's total landmass. It claims both the lowest and the highest points on the planet's surface. More than 4 billion people live here and it is home to the world's two most populous countries, China and India.

PETRA, JORDAN

Once a thriving trading centre, this unique city was carved into the pink sandstone rock face more than 2,000 years ago. Rediscovered in 1812, the entrance today is through the Siq, a long, narrow gorge flanked by high cliffs.

ANGKOR WAT, CAMBODIA
 The temple of Angkor Wat

 is covered with exquisite carvings. Part of a vast complex of sacred monuments spread over 400 sq km (155 sq miles), it was constructed between the 9th and 14th centuries. Parts of the complex are now grown over by trees.

IMmense carving

The Monastery at
Petra is beautifully carved and so huge that even the doorway is several stories high.

HINDU COSMOS
The temple is an earthly representation of the Hindu cosmos. Its five towers, shaped like lotus buds, form a pyramidal structure symbolizing the mythical Mount Meru, home of the Hindu gods.

RIVER GANGES, INDIA

Starting in the Himalayas and finishing at the Bay of Bengal, the River Ganges is worshipped by Hindus as the goddess Ganga. The river is a lifeline for the people who live alongside it, but it has become heavily polluted by human and industrial waste.

holy bathing

Pilgrims gather to bathe in the River Ganges at Haridwar, the "Gateway to God". It is one of the seven holiest places for Hindus.

TAJ MAHAL
The Taj Mahal was commissioned by Mughal emperor Shah Jahan in 1632 to house the tomb of his beloved wife Mumtaz Mahal.

MARBLE MONUMENT
Made of white marble, the colour of the building appears to change depending on the time of day.

0
CEAN
GOLDEN GATE

COSTA RICA RAINFOREST
FLORIDA EVERGLADES
The Everglades are a vast area of semi-tropical wetland, home to mang rove, mahogany, bayy,
and eucalypusu tres. The swampy oconditions
are perfect tor aligators and (4)

Mississippi
Delta

E.R I C A

$\mathrm{an}_{4}^{\mathrm{i}} \mathrm{n}_{4}$ -
$A M$
Albuquerque e City Little Rock
 SVANGNOH NTVWGLVOD ©o ndery
Monterrey
C

 vered with orchids, vines. ferns and moss

CHICHEN ITZA
The native American Maya people built emples and monumental ctites, such as
Chichen Itza, in the juggles of the e ucatán Chichen Itza, in the jungles of the Yucatan
Peninsula in Mexico from c. 200 cE .

YELLOWSTONE

IkE CLOCKWORK

-
GRAND
CANYON
.
dramatic Grand Canyon is
1429 km (118 miless) wide.

Erosion has exposed many
colourful rock layers, creating
an inspirational landscape.

$$
{ }_{m=1}^{\text {AMERICA }}
$$

$$
\begin{aligned}
& \text { GUATEMALA CITY ■ TEGUCIGALPA } \\
& \begin{array}{l}
\text { GUCIGALPA Sea } \\
\text { NICARAGUA }
\end{array} \\
& \text { gua sanjos }
\end{aligned}
$$

LONGEST RIVER
The Amazon River carries more water than
any other river and can be seen from space.

Europe

The continent of Europe is rich in cultural diversity, with a history of wealth, industry, and empire building. There are 23 official languages spoken across the 47 European countries.

Oceania

Oceania is the collective name for Australia, New Zealand, and the island groups in the Pacific Ocean, including Melanesia, Micronesia, and Polynesia. Australia dominates the region in size, population, and economic strength.

PACIFIC ISLANDS

There are more than 20,000 islands in the Pacific Ocean. These palmcovered paradises are either volcanic or part of natural reefs. While they may look similar, they are quite diverse in human culture

ISLAND PARADISE The Fijian archipelago Igroup of islands) is made up of more than 330 beautiful islands.

ABORIGINAL CULTURE

Aboriginal people have been living in Australia for more than 50,000 years. They have a tribal culture of storytelling and art, and a strong spiritual belief tying them to the land. Many still live in the Australian outback, where rocks feature their paintings.

ROCK ART
Some of the oldest Aboriginal paintings are more than 20,000 years old.

ULURU
Particularly sacred to the Anangu Aboriginal people, this massive red monolith dominates the surrounding landscape.

SYDNEY OPERA HOUSE

The Sydney Opera House is a performing arts centre designed by Danish architect Jorn Utzon in 1957. It opened in 1973, and today is visited by more than seven million people every year.

SURFING

Australia is a first-class surfing destination, famous for both the quality and the variety of its waves. The coastline has plenty of beach, reef, and point breaks to challenge the experienced surfer, and easy rolling swells for beginners.

WILDLIFE

The islands of Oceania are a long way from other landmasses, so they contain a diverse range of animals and birds, many of which are not found anywhere else in the world. Some birds, like the emu and kiwi, evolved into flightless specivvves due to the lack of predators.

MARSHALL

```
\begin{subarray}{c}{\mathrm{ Ralik }}\\{\mathrm{ Chain Ratak Chain \}}\\{\mathrm{ MAJURO }}\end{subarray}
```


(to Australia)
$\underset{\substack{\text { Komadce Slands } \\(\text { or } \\ \text { N }}}{ }$

GREAT BARRIER REEF

The world's largest coral reef is made up of around 3,000 individual reefs and hundreds of islands. It supports lots of marine life, including more than 1,500 species of fish.

FAST FACTS

A widespread area, there are 28 languages spoken across Oceania.
O AREA:
8,525,989 sq km (3,291,903 sq miles)

POPULATION:

38,304,000
NUMBER OF COUNTRIES: 14

LARGEST COUNTRY BY

 AREA:Australia $7,617,930 \mathrm{sq} \mathrm{km}$ ($2,941,283$ sq miles)
LARGEST COUNTRY BY POPULATION:
Australia 23,788,274
O LARGEST CITY BY POPULATION: Sydney, Australia 4,576,433
HIGHEST POINT:
Mount Wilhelm, Papua New Mount Winetm, Papua New
Guinea $4,509 \mathrm{~m}(14,795 \mathrm{ft})$

LONGEST RIVER:
Murray-Darling, Australia $2,520 \mathrm{~km}(1,570$ miles)

O LARGEST LAKE:

Lake Eyre, Australia $8,884 \mathrm{sq} \mathrm{km}$ (3,430 sq miles)

ROTORUA

Rotorua on New Zealand's North Island is a natural theme park full of steam clouds, bubbling mud pools, and soothing hot springs to bathe in. It is an area of great geothermal activity, where Earth's inner heat rises to the surface.

CHAMPAGNE POOL
Tiny bubbles of carbon dioxide rising
from the Earth make this hot spring
look like a warm glass of champagne

Antarctica

The continent of Antarctica sits under huge masses of ice called ice sheets. This ice holds 90 per cent of Earth's fresh water. Beneath it lies a continent of valleys, mountains, and lakes but only about 2 per cent is visible above the ice. The only people in Antarctica are scientists and staff working in research stations, and tourists.

Flags

Every country in the world has a unique flag. Each nation picks its own patterns and colours, which are usually of historical or political significance. A flag is a powerful symbol. It fosters pride in a country or cause and unites people in times of war and peace.

TYPES OF FLAGS

Variations on common flag patterns such as stripes and crosses turn up again and again all over the world. Often, the only difference between one flag and another is its colour. These are some of the common patterns.

ANCIENT SYMBOLS
Flags have been displayed since
ancient times as symbols of loyalty to a country or person. In battle, a flag rallied the troops. Early flags were made of wood or metal. Cloth was first used by the Romans.

NORTH AMERICA

HAITI JAMAICA

SOUTH AMERICA

WGMBIA

GUINEA

LESOTHO

THE JOLLY ROGER
The pirate flag known as the "Jolly Roger" was used widely in the 18th century.
With its ghoulish designs, it was meant to terrorize a victim into handing over his ship without a fight. The flags belonging to four famous pirates are shown here.

"CALICO JACK" RACKHAM

"BLACK SAM" BELLAMY

BLACKBEARD

UNITED KINGDOM

ANSWERING ERROR SIGN SIGNAL SIGNAL

FLAG SIGNALS

Before modern technology, ships at sea "talked" to one another by signalling with flags. They used semaphore, a code in which flags are held in different patterns to represent letters and numbers.

SIGNAL "H" SIGNAL "E" SIGNAL "L" SIGNAL "P"

END OF WORD
SIGNAL

NUMBERS NUMBERS
FOLLOW FOLLOW

THERE ARE SIX
AMERICAN FLAGS
 In 1969 the first men on the Moon, astronauts Neil Armstrong and Buzz Aldrin, planted the US flag at their landing site.

PLANTING

 FLAGSFor centuries, flags have been used by explorers to claim ownership of new land. The national flags planted at such places as the South Pole, the summit of Mount Everest, and even on the Moon all proclaimed "We were here first

MOUNT EVEREST

 In 1953 Edmund Hillary and Tenzing Norgay, the first men to stand on top of Mt Everest, planted the flags of the United Kingdom, United Nations, Nepal, and India.

Where food comes from

Long ago, people only ate what could be grown locally. Today, with modern transportation, people in richer countries can find food from all around the world - such as coffee from Brazil, rice from India, and olives from Italy - in supermarkets. Tropical places export crops such as mangoes and bananas, while countries with huge farmlands supply the world with cereals.

BASIC FOOD CROPS

Crops like rapeseed and sugar cane are grown in vast amounts because they can be used in many different ways, not just as foods, but also for products such as fuel. After they are harvested they are usually processed and sent to manufacturers to make other foods or goods.

SUGAR CANE

 After sugar cane is harvested, it is processed to extract sucrose lordinary sugar). It can be eaten as it is but more often is used to sweeten other foods.

RAPESEED Fields of yellow rape produce rapeseed which is usually turned into oil for cooking or used in food products. It is also used in anima feed and biofuels.

SUGAR BEET The sugar syrup extracted from sugar beet is used in many products, including drinks, feed for animals, and even fuels known as biofuels.

PALM OIL Palm oil is semi solid at room temperature. It is used in everything from ice-cream to from ice-cream to as in products like soap and cosmetics.

SOYA BEANS A great source of protein and vitamins soya beans can be used to make milk, textured vegetable protein, tofu, and flavourings such as soy sauce what we call breakfast cereals.

CEREALS

Plants producing grains used as food are called cereals. Most grains are ground into flour or turned into flakes, which are then used to make food such as muesli and porridge, or bread, cakes and biscuits. Many are ingredients of

MAIZE (CORN)

MILLET

MEAT

For thousands of years, animals have been reared to provide meat. Most large farms specialize in just one type of animal, raising cattle (cows and bulls) for beef, pigs for pork, sheep for lamb and mutton, and deer for venison. Pigs are the most popular because

FRUIT, NUTS

AND SEEDS

Tropical fruit like bananas and coconuts, and Mediterranean fruit like oranges, lemons, and limes need sunshine and warmth to grow. These major crops in warm countries are exported (sent abroad) to colder places that do not have the right climate to grow them. Fruit can be picked and eaten straight away, used to make juices, or added to recipes. Grapes are also harvested to make wine, and olives to make oil for salads and cooking.

CUCUMBERS AND GHERKINS

 AUBERGINES

CHILLIES AND PEPPERS

PEANUTS

TANGERINES AND MANDARINS

BANANAS

olives

PLANTAINS

GRAPES

PEACHES AND NECTARINES

tomatoes

APPLES

ORANGES

LEMONS AND LIMES

Culture

World religions

A religion is a collection of beliefs that attempts to explain the meaning of life. Most religions recognize a supreme power, usually a god or gods. There are many different faiths worldwide, most with their own laws and history set down in sacred books. The followers of a faith unite through prayer, rituals, and beliefs.

WHICH FAITH?

Christianity is the largest of the
world religions. The number of followers of any religion changes all the time, as people decide to join or leave a faith, or to convert from one to another.

CHRISTIANITY

Christians believe in one God and in his son, Jesus Christ. Their holy text, the Bible, tells how Jesus was born on Earth to be the saviour of humankind. His teachings gave rise to Christianity, of which there are various branches. These include the Protestant, Roman Catholic, and Orthodox churches. Each has a different form of worship, but they all pray to the same God.

SYMBOL etter for the sacred sound "OM"

HINDUISM

There are hundreds of millions of Hindus worldwide. Their religion includes many gods and goddesses, the greatest being Brahma. Hindus believe in reincarnation: the cycle of life, death, and rebirth that continues until the soul is set free. Most of them worship by saying individual prayers, and do not attend communal services, although they join together at festivals.

NADI TEMPLE

WORLD RELIGIONS

 BY PERCENTAGE Christianity Elislam E Hinduism EBuddhism - Sikhism- Judaism

Other religions

- No religious belief
 many styles. This built in the Nadi temple in Fiji.

ISLAM

The people who belong to this religion are called Muslims. They live according to the Five Pillars of Islam: faith, prayer, fasting, alms-giving, and pilgrimage. Their holy book is the Qur'an, which contains the word of the one Muslim God, Allah, as told to the Prophet Muhammad. Muslims pray at five set times every day. On Fridays, Muslims gather for prayers at a mosque.

FACING MECCA
At prayer, Muslims kneel facing the direction of the holy city of Mecca, to which

JUMEIRAH MOSQUE
The mosque is the centre of a Muslim community a place for people to pray meditate, and learn.

QUR'AN
In this copy of the Qur'an the text is surrounded by ornate borders.

BUDDHISM

Buddhists do not worship a single, creator god.
They follow a way of thinking based on the teachings of Siddhartha Gautama, born a prince in 5th-century India, who became known as the Buddha. Through recurring lifecycles, Buddhists hope to reach a state called Nirvana - freedom from all suffering.

STUPA
Dome-shaped mounds called stupas were built all over Asia to house Buddhist relics. This one is in Sri Lanka.

GIANT BUDDHA
This giant-sized statue of the Buddha in Uva Province, Sri Lanka, is carved from solid rock.

五

BUDDHIST NOVICE Boys as young as seven years may ente Buddhist monasteries as trainees, or novices.

PRAYER FLAGS Buddhist flags, fluttering in the mountains of Nepal, carry prayers into the wind

JAIN LAL MANDIR TEMPLE
Built in 1658, this is one of the oldest temples in New Delhi, India. Within the ornate buildings there is also a hospital for birds.

JAINISM

Followers of this faith, who are called Jains, mostly live in India. They believe, in common with members of many other religions that we die and are reborn in a repeating cycle. If a person can become truly spiritual, the soul becomes free. Jains respect all life, including plants and insects, and reject violence.

SHINTO

Arising out of Japanese folklore, Shinto developed as a religion more than 2,000 years ago. Followers believe in the existence of divine spirits, or kami. At Shinto places of worship, called shrines, people pay respect to the kami, and honour them with many rites and festivals.

GATEWAY
The gateway, known as a torii, to the Shinto shrine on Miyajima Island in Japan stands in the sea.

SYMBOL Nine-pointed star

LOTUS TEMPLE

Built in the shape of a lotus flower,
the Baha'í Temple in New Delhi,
India, is open to people of all faiths.

SYMBOL Yin and Yang

TAOISM

Tao means "the way" - the natural force or power that controls the Universe. According to Taoism, people must accept this power, while trying to lead peaceful and unselfish lives. Believers hope they will eventually be able to free their spirits and become immortal.

BAHA'I

One of the world's newest religions, Baha'í began in Persia (now Iran) in the mid-19th century. The aim of the faith is to achieve world peace and to strive for justice and equality among people of all religions.

ZOROASTER
The prophet believed that his God, Ahura Mazda, had appeared to him in visions.

CONFUCIANISM

this religious philosophy comes from the teachings of Confucius, a 5th-century Chinese thinker and reformer. Kindness, honourable behaviour, and respect for family are key beliefs.

GREAT THINKER A statue of Confucius stands at
the entrance to the Confucian Temple in Shanghai, China

CAO DAI

Originating in Vietnam, Cao Dai was founded in 1926. The faith takes some of its practices from other religions, including Roman Catholicism and Buddhism. Followers of Cao Dai would like to see all people living at peace with each other. They worship a Supreme Being and honour many saints.

THE WESTERN WALL
Also known as the Wailing Wall, this stone wall in the city of Jerusalem is
considered a holy site by Jewish people.

TORAH SCROLL The scroll, which contains the Torah handwritten in Hebrew, is read in the synagogue

JUDAISM

This is the religion of the Jewish people, who can trace their roots back to the Hebrews who lived in the Middle East almost 4,000 years ago. Judaism has one God. Followers worship in buildings known as synagogues under the guidance of spiritual leaders called rabbis. Teachings on Judaism are found in the Torah, or Hebrew Bible, and the Talmud, which is the Jewish code of law.

-

TAY NINH TEMPLE
This elaborate building at Tay Ninh in Vietnam is the most important temple of the Cao Dai faith.

INDIGENOUS RELIGIONS

From Africa to the Americas, indigenous religions are found among remote peoples untouched by the major faiths. These religions, which include the widespread practice of shamanism, often involve contact with the spirits.

BELIEF IN PROTECTION
Followers of indigenous religions often
carry objects - like this African nutshell
doll - as protection against harm.

World celebrations

Throughout the year, in nearly every country or community, people celebrate special events with festivals. Many of these events are religious or have historic links to the farming seasons. Often, a festival is a joyful holiday with music, processions, delicious food and, sometimes, gifts.

AUGUST

In August, it's holiday time for many. Pigs and a very messy tomato fight are among the fun events on offer. There are also arts festivals to enjoy. One of the most important is held in Edinburgh, Scotland.

EDINBURGH FESTIVAL
Drama, dance, music, and comedy are just some of the events at this Scottish cultural festival.

FEBRUARY

There is a lot of extravagant dressing up, with two big carnivals this month in Brazil and in Venice, Italy It's also Chinese New Year, with two weeks of celebrations and family gatherings.

RIO CARNIVAL, BRAZIL Costume parades, dancing competitions, loud music, and feasting last for five riotous days.

JULY 4

INDEPENDENCE DAY, USA
Decorated with the American Stars and Stripes flag, a festive cake takes centre table at a 4th July celebration.

Heading the festivals is Independence Day on 4 July. This celebrates the day in 1776 when America declared its independence from Great Britain. In Siena, Italy, a historic horserace takes place. A bodypainting festival in Austria is a popular modern event.

PALIO HORSERACE, SIENA Bareback riders race through the streets of Siena. Each wears colours representing a district of the city.

RAMADAN AND EID AL-FITR A Moroccan shopkeeper sells trays of pastries baked for Eid. This holiday of eet treats ends a month of fasting during Ramadan

OCTOBER

Homes light up in October. Diwali, the "festival of lights", is a big occasion in the Hindu calendar. The date varies, but often falls in October. On 31 October, things get spooky when grinning pumpkin lanterns appear for Halloween.

MOON FESTIVAL, CHINA Rich pastries known as mooncakes are made for the autumn moon festival in China and other parts of Southeast Asia.

DIWALI
Hindu people light their houses with candles and oil lamps to symbolize the triumph of good over evil.

World languages

Spoken and written language allows us to communicate with one another．Around 6，000 languages are spoken across the world，and many people speak more than one language．

LANGUAGES

The three most widely used languages are spoken by nearly one quarter of the world．

848 million speakers worldwide
2 SPANISH
339 million speakers worldwide
ENGLISH
335 million speakers worldwide
4 HINDI
260 million speakers worldwide
ARABIC
242 million speakers worldwide

GREETINGS

In all languages there is a way to greet someone． Here is how to greet someone in some of the world＇s most widely spoken languages．Not all languages are written using the same alphabet－a large number of scripts are used across the world．

你好

lee－ho，MIN NAN

xin chào

oñosol

侬好
nong hao，WU

The story of art

From the beginning of civilization, people in different cultures have produced art in many forms. They have used paint, stone, wood, metal, clay, and even their own bodies to show religious devotion, express ideas, or simply reflect the world around them.

PREHISTORIC
FIGURE
C. 30,000-2500 bсE PREHISTORIC ART
Early humans used charcoal and rock pigments to paint animals and figures on cave walls. Some made spray handprints by blowing paint through hollow bones. They also carved figures out of stone and animal tusks.

C. 3000-539 BCE OLDEST

CIVILIZATIONS

Many beautiful examples of art have been found at the Royal Cemetery of Ur, which is in modern-day Iraq. They were created by skilled sculptors and jewellery makers in Mesopotamia, one of the oldest, and longest lasting, civilizations in our distant past.

GOLD AND BEAD WREATH

BYZANTINE ALTAR MOSAIC

MOSAIC OF VIRGIN MARY, ISTANBUL

c.500-1400

MEDIEVAL

AND BYZANTINE

Metal and enamel work, carvings, and embroidery were prized in medieval Europe. Manuscripts were illuminated lit up with decorations in bright pigments and gold leaf. Earlier Byzantine Christians produced icons of figures and frescoes of religious scenes.

FRENCH TAPESTRY

ILLUMINATED
ILLUMINATED
c. 324-1450

ISLAMIC

Islamic artists decorated mosques with intricate patterns using tiles and mosaics. Modern Islam uses a similar approach - places of worship are beautifully patterned, but they never include images of people or animals.

THE GREAT MOSQUE SPAIN

ISLAMIC BUILDING, ISRAEL

c. 1 CE-PRESENT

NATIVE AMERICAN

In Native American tribes, practical items like blankets and bags were so skilfully decorated with beads, feathers, and shells they became works of art. People also made tiny animal talismans and towering tree-trunk sculptures called totem poles carved with faces, animals, and birds. These arts continue today

TURQUOISE ANIMALS

PORTRAIT BY TITIAN

ITALIAN
GOBLET

c. 1350-1600

RENAISSANCE

Beginning in Italy, the Renaissance was a time when every form of art flourished Artists were inspired by Ancient Greek and Roman works and produced fine paintings and sculptures that were full of grandeur, personality, and beauty. Venice became a centre for exquisite glasswork

MONA LISA BY LEONARDO DA VINC

C. 1600-1800

BAROQUE AND ROCOCO

Baroque painting was all about drama. Artists painted realistic emotional scenes with intense colour and dramatic lighting. Originating in France, Rococo was a lighter style of architecture, furniture, and art that was elegant, graceful, and highly decorative.

ORGAN WITH
ROCOCO DECORATION

BEWARE OF THE DOG MOSAIC, POMPEII

Musical instruments

From very early times, people have enjoyed making music by beating, plucking, rattling, or blowing into instruments. Different groups of instruments are known as "families". In an orchestra, many of them come together to combine their sounds.

woodwind

These wind instruments are made of metal and plastic, as well as wood. Holes in the pipe are opened and closed with the fingers to change the notes. Some woodwind instruments use a vibrating strip, called a reed, as a mouthpiece.

INTERNATIONAL INSTRUMENTS Round the world, music-making involves a huge variety of traditional instruments. Many are unique to particular countries or cultures.

DHOLAK
(INDIA)

THE ORCHESTRA

Large orchestras have followed the same seating arrangement for their musicians since the 18 th century. The various instruments are positioned according to type.

 Conductor
First violins
Second violins
Violas
Cellos
Double bass
Flutes
Oboes
Clarinets Bassoons
Horns
Trumpets
Trombones
and tubas
Harp
Drums
Other percussion
Piano

BRASS

The brass section of an orchestra makes some of the loudest sounds. When brass players blow air into their instruments, they put their lips close to the mouthpiece to create vibrations. Many types of brass have button-like valves that are pressed down to alter notes.

A percussion instrument is struck or shaken to keep a rhythm or create a tune. Percussionists usually play more than one instrument.

AprTinimutua

GLOCKENSPIEL

STRINGS

Several types and sizes of
instruments are played with a bow drawn across a set of tightly stretched strings. They

MORE THAN 70 DIFFERENT禺 PIECES OF WOOD ARE PUT TOGETHER TO FORM
THE MODERN VIOLIN

GUITAR FAMILY

A subset of the string family, guitars may have as many as 18 strings, but mos have six. The strings are played with the

How music works

Understanding how music works - music theory - is a vital part of learning how to read music and play an instrument. To play music, you need to understand its language - notes, pitch, rhythm, and harmony.

WRITING MUSIC

Music is usually written on five parallel lines known as a stave. Notes are placed on the lines, or in the spaces between them. The higher a note is placed, the higher its pitch

\section*{| THE FIRST KNOWN |
| :--- |
| MUSIC WAS WRITTEN IN |
| AN ANCIENT LANGUAGE |
| CALLED CUNEIFORM, |
| 3,400 YEARS AGO |}

on the lines

THE PIANO

KEYBOARD

Each octave on the piano keyboard has seven white notes - A BCDEFGand five black notes, grouped in twos and threes. A full-sized keyboard usually has around seven octaves. Its central C is called Middle C.

THE PIANO
With its unique layout, the piano is a useful instrumen
for learning music theory. The pattern of black and
The white note between a pair of black
white keys shows the relationships between notes.

CLEFS

A clef is normally written at the start - the left-hand end - of every stave on the page. It fixes the pitches of the lines and spaces. The two most common clefs are the treble (or G) clef and the bass (or F) clef.

NOTE VALUES

A note value is how long a note lasts for. It is measured in relation to other notes. Shown below - in descending order of length - are the five most common note values: semibreve, minim, crotchet, quaver, and semiquaver.
time values
The chart below shows how the note values relate to each other. Each column represents one crotchet, so a semibreve lasts as long as four crotchets.

BEAMS

Two or more consecutive quavers can be joined together with a thick line called a beam, which replaces the individual tails. Semiquavers or demisemiquavers can be joined in the same way. Beams make the rhythm easier to read.

$$
0 \quad 0+1 / 2
$$

DOTTED NOTES

When a note is followed by a dot, it makes the note half as long again. The dotted crotchet below is $1 \frac{1}{2}$ times longer than a crotchet, and the dotted minim is $11 / 2$ times longer than a minim.

$$
=0+1+2
$$

$\begin{aligned} & \text { TIME } \\ & \text { SIGNATURES } \end{aligned}$	Two crotchet	Four crotchet	3 Three minim	Nine quaver
Time signatures appear at the beginning of a piece of music. The	$4 \text { beats to }$	beats to the bar	beats to the bar	beats to the bar
top number indicates the number of beats in a bar, and the bottom number shows the note-value of each beat: $2=$ minim, $4=$ crotchet, $8=$ quaver, and $16=$ semiquaver.	beats to the bar		$6_{\text {six }}$ quaver beats to the bar	Twelve quaver beats to the bar

SEMITONES

A semitone is the musical term for the interval, or gap, between notes that are immediately next to each other on the keyboard. A semitone means "half a tone" and represents a half step on the keyboard.

TONES

A tone is the equivalent of two semitones. If two notes have just one note between them on the keyboard, they are a tone apart.
on the stave This is how the three tones shown on the keyboard are written on the stave

RESTS

TEMPO

The speed at which music is played is known as tempo Tempo is usually indicated by descriptive terms. Shown here are some of the most common Italian terms for tempo and tempo changes.

PRESTO		ACCELERANDO	$\begin{aligned} & \text { 를 殅 } \\ & \text { 点 } \end{aligned}$
ALLEGRO		PIU MOSSO	
MODERATO		STRINGENDO	
ANDANTE		RITENUTO	
ADAGIO		RITARDANDO	2
LENTO		RALLENTANDO	

SHARPS AND FLATS

Sharps and flats are symbols that raise or lower notes on the keyboard. Sharps raise a note by one semitone, and flats lower a note by one semitone. Notes that are not sharpened or flattened are called naturals.

SHARPS AND FLATS ON BLACK NOTES The black notes are sharps or flats depending on whether the white notes are above or below them. $B b$ is a semitone but it can also be called Eb, because it is one semitone down from E

Dance

All over the world and in every culture, people enjoy dancing moving their bodies to music with a partner, in groups, or solo. People dance to tell stories, express their faith, show their patriotism, keep fit, get ready for battle or sport, celebrate an important event, compete, or purely for fun.

SACRED DANCE

Dance plays an important part in many religions. People include dance in their religious ceremonies or to communicate with their gods.

CORYBANTES These Ancient Greek priests danced and drummed in armour.

BUDDHISM Dancing figures are Buddhist shrines

MUSLIM DERVISHES Spin themselves into a state of ecstasy, so they can feel closer to god.

NATIVE AMERICANS Danced to ask the gods for such things as rain or a good harvest.

SIVA NATARAJA Hindu god Siva is often shown dancing at the

FOLK DANCING

People perform folk dances at festivals and celebrations. The dances are often accompanied by traditional music, and are passed down through generations

ROMA DANCE Often performed at family weddings and christenings

LATVIAN DANCE The Latvian Song and Dance Festival is a huge annual event

EGYPTIAN DANCING Ancient Arabic dance usually performed by a solo woman.

IRISH DANCE ften performed competitions, either solo or in teams.

AFRICAN DANCE African dance is often accompanied by drums and voices.

CLASSICAL DANCE
Classical dance is performed by trained or professional dancers. The focus is on formal steps and poses. These dances usually tell stories from literature or legend.

DANCE CRAZES

Some dance crazes caused outrage when they first appeared. In the 1780 s people were shocked by the waltz because men and women embraced as they danced.

CANCAN

The cancan was a lively, high-kicking dance that became wildly popular in the ballrooms and music halls of Paris, France, in the 1830s.

JITTERBUG
An energetic, acrobatic couples' dance that originated in the USA in the 1930s. It spread to Europe via American servicemen during World War II.

TWIST

The twist was a 1960s craze. There were no steps to learn and no partner needed - dancers just wriggled and twisted along to the music on their own.

LINE DANCING

Dancers line up in a row and perform a pattern of steps together to country music. Line dancing started in the USA the 1970s but became a worldwide craze in the 1990s.

GANGNAM STYLE

An overnight dance sensation in 2012 when a video of Korean musician Psy performing his song of the same name went viral.

$$
\begin{aligned}
& \text { COSTUMES } \\
& \text { The costume enhances a dancer's } \\
& \text { movements or helps set the scene } \\
& \text { of a story. Costumes are a traditional } \\
& \text { element of many dance forms and their } \\
& \text { design has changed little over time. } \\
& \text { Jewelled } \\
& \text { headpiece }
\end{aligned}
$$

Ballet

Ballet started as an entertainment in the royal courts of Europe, and has grown into a breathtaking art form, enjoyed all over the world. Professional dancers work hard to reach the highest levels of fitness and artistry.

Palace of Versailles

1841 of Giselle, danced by Italian ballerina Carlotta Grisi, takes place in Paris.

1877, Swan Lake, with music by Tchaikovsky, Bolshoi Ballet in Moscow, Russia.
$1913=$
The Rite of Spring. choreographed by Vaslav Nijinsky. causes outrage at its premiere in Paris.

Dancers 1964 -
Dancers Margot Fonteyn and Rudolf Nureyev receive a record 89 curtain calls after performing Swan Lake in Vienna, Austria.

THE STORY

OF BALLET
Ballet developed in France, which is why all the steps still have French names. It became a huge attraction in the great theatres of France, Italy, Russia, Scandinavia, and England

-1832
La Sylphide, choreographed by Filippo
Taglioni, opens in Paris, France.

Mariinsky Theatre, home of the Russian Imperial Ballet from 1860
-1890
The premiere of Sleeping Beauty
is performed at the Mariinsky
Theatre, St Petersburg.
-1909
Ballet impresario, or organizer,
Sergei Diaghilev forms the Ballets
Russes company in Paris.

-1931

The Sadler's Wells Ballet Irenamed the Royal Ballet in in London.

Sculpture outside the Royal Opera House, home of the Royal Ballet

YEARS OF TRAINING

Most professional dancers start young. After 8-10 years of dedicated training, only a few of the most talented students will join a ballet company (corps de ballet). The best dancers might progress to become a soloist or principal dancer.

MAKING A POINTE SHOE Female dancers wear special reinforced shoes so they can dance on the tips of their toes, a technique called en pointe. Dancers often embroider the toe area, to make shoes last longer and to help prevent slipping.

1 SHAPING THE UPPER Layers of satin and stiff canvas are stitched together

CLASSIC BALLETS

The fashion for full-length ballets reached its height at the end of the 19th century. Many of the ballets from that time are still popular today.

O SWAN LAKE, 1877
A handsome prince falls in love with a mysterious girl, only to discover that an evil magician has cast a spell on her.

GISELLE, 1841,
ADAPTED 1884
A young girl is betrayed by the man she loves. She dies of grief then comes back as a ghost and saves the life of the man who broke her heart.

O THE FIREBIRD, 1910
Based on several Russian folk tales, it tells the story of how Prince Ivan and the magical Firebird overcome an evil magician called Kostchée.
O COPPELIA, 1871
A light-hearted tale of a young man who falls for a life-sized doll, before realizing that his true love is the real, live girl next door.

THE NUTCRACKER, 1891
Toys magically come to life and take their owner on a journey to the Kingdom of Sweets, where the Sugar Plum Fairy lives, in this Christmas story

COSTUME DESIGN

Costumes tell the audience about a character but must also allow a dancer to move freely. Below is the costume for a character from Greek myth called Eurydice, who is taken to the gloomy Underworld when she dies.

— Colour samples
FROM SKETCHPAD TO STAGE When Eurydice first appears, she is weighed down by a heavy cloak. The costume is designed so that she can remove it easily after she makes

Great buildings

The first great buildings were constructed for worship or for protection from invaders. In more recent times, many grand buildings are public spaces such as galleries and museums, or towering skyscrapers of offices and hotels.

C. 2560 BCE AND SPHINX

The Great Pyramid was built as a tomb for Egyptian Pharaoh Khufu, and the Sphinx for his son, Khafre. Both were originally covered with smooth white limestone, and would have glittered in the sunlight.

THE GREAT PYRAMID AND
SPHINX AT GIZA, EGYPT

c. 700 BCE

GREAT WALL
The Great Wall of China was built to keep out invaders. Various Chinese rulers extended it over hundreds of years, and it now stretches for an incredible $21,197 \mathrm{~km}$ (13,170 miles).

c. 1900 BCE

PALACE OF KNOSSOS

Minoan civilization on the Greek island Minoan civilization on the Greek istand
of Crete. Here, religious ceremonies may have been performed and political issues debated. By uncovering the remains, experts have worked out what the buildings would have looked like.

ARTIST'S IMPRESSION
OF THE PALACE BUILDINGS

COPY OF A FRESCO
FOUND AT KNOSSOS

SAGRADA FAMILIA, BARCELONA, SPAIN

1840

HOUSES OF PARLIAMENT
The United Kingdom's centre of government was built on the site of a palace, which burned down in 1834. The remains were incorporated into the new Gothic-style building. Construction took 30 years, and its architects died before completion.

the houses of parliament, LONDON, UK

$\langle 1714$

CHRIST CHURCH

This London church is one
of six designed by Nicholas Hawksmoor in a style called English Baroque. It fell into disrepair in the 20th century but has been restored to its original glory, and its white stone facing gleams in the sunshine.
 LONDON, UK

1632

TAJ MAHAL

The Taj was built to be an elaborate jewelled tomb for the beloved wife of Mughal emperor Shah Jahan. It is known for its perfect symmetry: it is exactly as wide as it is high.

THE TAJ MAHAL AGRA, INDIA

- 1930 EMPIRE STATE BUILDING

It took around 3,400 workers to complete the construction of this 103-floor Art Deco skyscraper in just 410 days. It was the world's tallest building until 1972, and remains New York City's most famous landmark. Every year,

EMPIRE STATE BUILDING, NEW YORK CITY, USA

>1959

SYDNEY
OPERA HOUSE
A multi-venue performing arts centre, Sydney Opera House was designed by Danish architect Jorn Utzon in a style called Modern Expressionism. The building's distinctive look comes from its one million self-cleaning glazed white tiles.

1971

POMPIDOU

 CENTREHousing a library, museum of modern art, and a centre for music research, the Pompidou is a hightech arts centre. The different coloured parts are not just ornamental: green pipes indicate plumbing; blue ducts are for climate control: elevators, escalators, and staircases are red
 PARIS, FRANCE

- 1993

GUGGENHEIM

 MUSEUMThe Guggenheim in Bilbao, Spain, is one of the world's most admired and popular buildings. Its architect, Canadian Frank Gehry, intended its shiny curves to appear random and sculpture-like

THE GUGGENHEIM, BILBAO, SPAIN

440s bCE
 PARTHENON

ts architects decided to make their temple to the goddess Athena the most impressive in Ancient Greece, and today it is one of the great monuments of the ancient world The Parthenon has many columns, and is decorated with carved panels and a sculpture frieze

80 CE

COLOSSEUM

This was the greatest amphitheatre in Ancient Rome. As many as 50,000 people gathered here to watch dramas, gruesome gladiator battles, and amazing spectacles. In the arena were passages, trapdoors, and hidden lifts to allow animals and men to appear from beneath the ground

HE COLOSSEUM ROME, ITALY

537 CE

HAGIA SOPHIA

The cathedral church of Constantinople (now Istanbul), was the largest in the world for 1,000 years. It is famous for its massive dome, and for the ornate mosaics and marble pillars inside. Today, Hagia Sophia is a museum.

ISTANBUL, TURKEY

ANGKOR

WAT

Meaning "City of Temples" Angkor Wat is the largest temple complex in the world. It was built to symbolize the home of the Hindu gods, Mount Meru. Its five towers represent the five peaks of the mountain, the walls its mountain ranges, and the moat the ocean.

ANGKOR WAT, SIEM REAP, CAMBODIA

1609

BLUE MOSQUE

This mosque was built as an Islamic place of worship that would match the brilliance of the Hagia Sophia cathedral. Its design mixes traditional Islamic and Byzantine Christian architecture. It is named for its blue-tiled interior.

blUE MOSQUE, ISTANBUL, TURKEY

1552

ST BASIL'S CATHEDRAL
Built under the reign of Ivan the Terrible, this cathedral was designed to look like the flames of a bonfire rising up to the sky. It is famous for its unique, colourful, and ornate appearance

ST BASIL'S CATHEDRAL MOSCOW RUSSIA

< 1406

TEMPLE OF HEAVEN

This temple complex is intended to symbolize Heaven and Earth. Its most important building is the Hall of Prayer for Good Harvests, where sacred ceremonies were conducted by the Ancient Chinese emperors.

THE HALL OF PRAYER FOR GOOD HARVESTS, BEIJING, CHINA

1333

HIMEJI CASTLE

Also known as White Heron

Castle, Himeji is Japan's largest and best preserved castle. It was built as a fortress, and its multiple moats, fortified gates, and winding passages were designed to confuse and exhaust intruders.

HIMEJI CASTLE, JAPAN

1238

ALHAMBRA PALACE

A palace and fortress built by Moorish (North African Muslim) kings of southern Spain, the Alhambra was designed to represent Paradise on Earth There are enclosed landscaped gardens, and the palace is lavishly decorated.

THE ALHAMBRA GRANADA, SPAIN

THE GUGGENHEIM AND SURROUNDING BUILDINGS

1994

JIN MAO TOWER
Traditional Chinese and modern Western architectural styles are combined in this Shanghai skyscraper. Each tier flares outwards at its top like a pagoda-style roof. The tower is covered in glass and designed to be wind and earthquake resistant There is a swimming pool on the 57th floor

INSIDE THE JIN
MAO TOWER

\qquad

2004

BURJ KHALIFA
With 163 floors, Burj Khalifa is the world's tallest building. It is topped with a spiral minaret, like those on mosques. Its 24,348 windows are machine-cleaned, but the top of the spire is cleaned by hand, with the workers dangling from ropes.

TOP 10 TALLEST SKYSCRAPERS
A skyscraper is a building used for offices, homes or hotels that is higher than $150 \mathrm{~m}(450 \mathrm{ft})$.

JIN MAO TOWER,
SHANGHAI, CHINA

Great books

Thousands of years ago, stories were simply spoken aloud or told with pictures. As writing developed, tales were inscribed on stone, and then on parchment and paper. Great books transport us to different lives and are enjoyed by generations of readers all over the world.

2ND MILLENNIUM $>$ c. $16 T H-1 S T$

BCE
 THE EPIC OF GILGAMESH

This poem was inscribed on clay tablets and is thought to be the first piece of written literature. It describes the journey of Gilgamesh, king of Uruk, who is on a quest with a wild man to fight evil.

CENTURY BCE

THE EGYPTIAN BOOK OF THE DEAD
This collection of drawings and magic spells was written over hundreds of years in Ancient Egypt. The spells were buried with the dead to help them in their next life in the Underworld

> "Humbaba's mouth is fire; his roar the floodwater; his breath is death."

C. 4 TH-2ND

 CENTURY BCEINDIAN EPICS
Mahabharata by Vyasa and Ramayana by Valmiki are important Sanskrit poems that began as spoken songs. They tell stories about Indian culture, Hinduism, great wars, and exciting adventures

Great thinkers

Throughout history, people have asked questions about the world and our place in it. Some great philosophers have come up with answers that have transformed our thinking - and others challenge us by posing new problems for us to think about.

C. 563-483 BCE

SIDDHARTHA GAUTAMA
Known as the Buddha, or "enlightened one", he taught that nothing in the world is permanent. His goal was to end people's suffering, through teaching then the Eightfold Path to enlightenment.
"'Even death is not to be feared by feared by
one who has lived wisely."

1632-1704

JOHN LOCKE

Englishman Locke believed that people have the right to control their own body, and no one can tell them what to do with it. His ideas about power and freedom influenced lawmakers in the newly formed USA, who based the American Constitution of 1787 in part on Locke's ideas.
"Where there is no law, there is no freedom."

1694-1778

VOLTAIRE

A French poet, playwright, and historian, Voltaire argued for free speech that in a civilized society, everybody should have the right to say and think whatever they like.

1596-1650

RENE DESCARTES

Descartes started a revolution in philosophy by doubting everything - including whether he really existed. He decided that as he had thoughts, someone must be thinking them so he must

"I think, therefore I am."

IMMANUEL KANT

Unlike many philosophers of his time, Kant believed that knowledge of what is right and wrong is not born in us or given to us by God. We decide for ourselves what is morally right by using reason.

MARY

 1759-97MARY
WOLLSTONECRAFT
An English writer and teacher, she
campaigned for women to have the
same opportunities and rights as
men. Her book, A Vindication of the
Rights of Women, argued that girls
should be educated as well as boys. 1759-97
MARY
WOLLSTONECRAFT
An English writer and teacher, she
campaigned for women to have the
same opportunities and rights as
men. Her book, A Vindication of the
Rights of Women, argued that girls
should be educated as well as boys. 1759-97
MARY
WOLLSTONECRAFT
An English writer and teacher, she
campaigned for women to have the
same opportunities and rights as
men. Her book, A Vindication of the
Rights of Women, argued that girls
should be educated as well as boys. 1759-97
MARY
WOLLSTONECRAFT
An English writer and teacher, she
campaigned for women to have the
same opportunities and rights as
men. Her book, A Vindication of the
Rights of Women, argued that girls
should be educated as well as boys. 1759-97
MARY
WOLLSTONECRAFT
An English writer and teacher, she
campaigned for women to have the
same opportunities and rights as
men. Her book, A Vindication of the
Rights of Women, argued that girls
should be educated as well as boys. 1759-97
MARY
WOLLSTONECRAFT
An English writer and teacher, she
campaigned for women to have the
same opportunities and rights as
men. Her book, A Vindication of the
Rights of Women, argued that girls
should be educated as well as boys. 1759-97
MARY
WOLLSTONECRAFT
An English writer and teacher, she
campaigned for women to have the
same opportunities and rights as
men. Her book, A Vindication of the
Rights of Women, argued that girls
should be educated as well as boys.

DAVID HUME

Hume was a founder of "sceptical" philosophy, saying that there is nothing we can know for certain. He believed knowledge came only from direct experience, not from a person's ideas or religious beliefs.

"Human reason is troubled by questions that it cannot dismiss, but also cannot answer."

1759-97

551-479 всE
 CONFUCIUS

One of the most important early Chinese philosophers, Confucius taught that in order to live good and happy lives, people should respect their neighbours, honour their families, and obey their rulers.
"To study and not think is a waste. To think and not study is dangerous.'

469-399 вCE 427-347 вCE

SOCRATES

One of the greatest Greek thinkers, Socrates devised a way of testing theories that involved asking lots of questions until he arrived at the truth. To him, the most important question of all was: "What makes a good life?
"I am not an Athenian or a Greek, but a citizen of the world.'

PLATO

Plato thought that our world is a faulty reflection of a perfect world that exists somewhere else. He founded the world's first university, the Academy, near Athens in Greece.

ARISTOTLE

Plato's pupil, Aristotle, is often called the first scientist. He believed that we should base our theories on what we have seen and experienced, rather than what we feel is true.

354-430 CE AUGUSTINE OF HIPPO

Born in North Africa
Augustine was a Christian leader and thinker. He tried to explain why there is so much evil in our world, when God, who created it, is perfectly good.

1588-1679
 THOMAS HOBBES

An English philosopher who believed that people are basically selfish. A civilized society needs to agree on a set of laws, then appoint a strong leader to make sure everyone obeys those laws.

1469-1527

NICCOLO MACHIAVELLI
An Italian writer and diplomat. He wrote The Prince, a book of advice for politicians. In it, he argues that sometimes it is right for a leader to do terrible things such as lying or even killing, if they are done for the good of his kingdom.
"The first method for estimating the intelligence of a ruler is to look at the men he has around him."

THOMAS AQUINAS
A noble-born Italian monk. he wanted to prove God's existence through reason. He believed that it is obvious from observing the world that a supremely intelligent being must have created it, and this being must be God.

LUDWIG

WITTGENSTEIN
One of the 20th century's most influential thinkers. He was especially interested in logic, and the connection between language and the world. He taught that we can only talk or write properly about things that exist.

1905-80

JEAN PAUL

SARTRE

French writer and existentialist thinker. He believed that there is no God, and people have not been invented for any particular purpose: we must choose for ourselves what to do with our lives.

1126-98

IBN-RUSHD (AVERROES)

A Muslim philosopher

from Cordoba in Spain. He studied Aristotle and Plato and tried to combine their scientific approach with Muslim religious views to create a unified idea of how the world works.

HILDEGARD OF BINGEN

A German writer, composer, and nun, Hildegard wrote about how to treat physical diseases by "spiritual healing". From the age of six she saw visions that seemed to be from God, and she wrote about them in many books

1908-86

SIMONE DE BEAUVOIR
French writer who argued that girls are not very different from boys when they are born. But because people treat women differently, they are forced to become submissive and obedient.

1930-2004

JACQUES
 DERRIDA

French philosopher who devised a way of thinking called "deconstruction. Language must be pulled apart, or deconstructed, to show how there are no fixed meanings to words. In fact, words get in the way of the search for truth.
"To pretend, I actually do the thing: I have therefore only pretended to pretend.

Food around the world

Every country has traditional food, based on local ingredients and handed-down recipes. Once upon a time you could get pizza only in Italy and sushi only in Japan. But today the world is like one huge café - with tastes from every continent available in big supermarkets and on city streets.

SOUTH AMERICA

Meat is a feast in South American countries, especially fine beef from cattle ranches on pampas grasslands. The continent's historic links with Spain

and Portugal can be seen in stuffed

ACARAJE, BRAZIL,

ROAST GUINEA PIG, PERU

BLACK BEAN AND PUMPKIN SOUP, BRAZIL

NORTH AMERICA

People from many cultures have migrated to North America, introducing a wide range of food and recipes. The Thanksgiving roast turkey and pumpkin pie date back to the Puritan settlers, who cooked a feast of home grown food to celebrate survival in their new land.

Cons)

AFRICA

Food on this huge continent is full of flavours and scents some from the Middle East and Asia. There are slow-cooked tagines and African curries, creamy dips with flatbread, and couscous with pomegranate seeds.

ICE CREAM WITH DULCE DE LECHE SAUCE, PARAGUAY

ZAHLOUK, MOROCCO
FERAKH MAAMER
MOROCCO

boEREWORS, SOUTH AFRICA

BOBOTIE, SOUTH AFRICA

FUL MEDAMES, EGYPT

Fruit

A fruit is the edible part of a plant that develops from its flowers. Each fruit contains a seed (or seeds) that is surrounded by flesh and enclosed in a skin or rind. Fruit is full of natural sugar and usually tastes sweet.

INSIDE A FRUIT

The flesh surrounding the seeds of a fruit is formed into layers: the central layer holds the seeds, while the outer layer is the skin or rind. The skin of some fruit, such as apples, can be eaten.

BERRY

PIT FRUIT
The hard stone of a pit fruit contains a single seed. Some pit fruit, such as raspberries, are actually made up of individual sections, each containing a seed.

BERRIES

A berry is a fruit with a seed, or seeds, that is produced from a single flower. The seeds are hidden in soft, often juicy, flesh Many smaller berries have edible skins

CITRUS FRUIT
Most citrus fruits have a hard rind or skin. Citrus fruits are grown mainly for their delicious juice, which is held in the fleshy segments. These segments are enclosed in a soft, white layer of tissue known as the pith.

SPREADING SEEDS

a new plant or tree.

SIZE

STINKIEST FRUIT

Many people consider the world's stinkiest fruit to be the durian. It can smell like rotten onions, but has a sweet, custard-like flesh.

CORE FRUIT

These fleshy fruits have thin often edible, skins. Their seeds are contained in the core at the centre of the fruit.

ACCESSORY FRUIT
Some kinds of fruit grow differently from others. They are known as accessory fruit. The core fruit group is sometimes included within this category.

STRAWBER

MELONS

The melon originated in Africa. Each melon contains many seeds in the centre, which are surrounded by soft, sweet, juicy flesh. The hard skin is inedible.

Vegetables

The word "vegetable" is not a scientific term. It is a word that people began to use hundreds of years ago to refer to plants that were grown to eat, rather than foraged from the wild. There are many different types, and they are rich in vitamins and minerals.

COLOURS

You can often tell the health benefits of a vegetable from its colour. The colours of vegetables come from their natural pigments.

TYPES OF VEGETABLES

Vegetables are divided into groups according to the part of the plant that is eaten, for example roots, stems, leaves, pods, or flowers. Some are strictly "fruits", but because they are used in savoury cooking, are commonly called vegetables.

AND BUDS

ROOT
VEGETABLES

CHLOROPHYLL Helps replenish red blood cells

FRUIT

These vegetables are all the fruit of a plant, and they contain the seeds it would use to reproduce.
In this sense, they are very like apples and oranges, but these fruits contain less sugar and taste savoury, not sweet.

POD VEGETABLES

Pod vegetables come from plant that produce fruits in the form of seeds or beans, nestled inside a pod. Many pod vegetables belong to a family of vegetables known as legumes. These vegetables are very high in protein.

OKRA

LEAFY VEGETABLES

All vegetables have leaves, but "leafy vegetables" are the ones where we eat the leaves, rather than trim them off. The darker the leaves, the stronger the taste, and the richer they are in vitamins A and

FLOWERS AND BUDS
These vegetables are taken from plants that are grown for their edible flower heads or buds, such as broccoli and cauliflower. They are sturdy and high in fibre, which is good

CAULIFLOWER

ROOT VEGETABLES

These are the parts of the plant that grow underground absorbing moisture and nutrients. This group includes roots,

CHEESE-MAKING
The first stage in the making of any type of cheese is to curdle the milk. This means getting the milk to separate into solid lumps (curds) and a liquid called whey. The photographs below show the steps for producing a hard cheese such as Cheddar.

CURDLING THE MILK A machine stirs an the milk to speed curdling
 DRAINING AND HEATING The milk curds are cut cubes and the whey is allowed to drain off.

"CHEDDARING"
The curds are
cheddared" (piled up) to press out more moisture.

RIPENING
TIPENING
Thape the cheeses, the curds are put into moulds, then left to ripen.

ADDED FLAVOURS

Many people like to eat cheese just as it is. But cheeses

Cheese

Filling a sandwich, used in a sauce, or just nibbled, cheese is one of the world's favourite foods. It is delicious, nutritious, and made in so many varieties that there is a cheese to suit almost everyone. Most people have eaten only a few different cheeses, but there are thousands to try.

GREECE
23.4kg (52 lb) Favourite: feta, tangy, white, and crumbly.

4 GERMANY
22.9 kg (50 lb) Favourites: Gouda, semi-hard and rich-tasting; and Bruder Basil, a semi-soft
smoked cheese
 Parmesan, nutty and grainy;
mozzarella, made with buffalo milk; and Gorgonzola, blue-veined and crumbly.
7 SWITZERLAND $\mathbf{2 0 . 8} \mathbf{~ k g}$ ($\mathbf{4 6} \mathbf{~ l b}$) Favourites: Emmental, classic "holey" cheese and Gruyère, firm and nutty.

8 AUSTRIA

19.9 kg (44 lb) Favourites: Bergkäse and Tilsiter, both with a strong taste and smell.

HARD CHEESE

This type of cheese is made from cooked curds pressed firmly into shape and left to age. The method removes as much moisture as possible from the curds and produces a solid cheese that keeps well. Semi-hard cheese has a higher moisture content.

France

 forms. Depending on the type of cheese, the centre may have a creamy or chalky texture.

Italy

KETEM
Israel

France

USA

Bread

First eaten around 30,000 years ago, bread is a favourite food all around the world. Usually made with wheat or rye flour, it is easy to make and a great source of carbohydrates for energy. There are thousands of delicious varieties of bread, from flat and crisp to plaited and fluffy.

MAKING BREAD
Making bread is not difficult, although you need some strength to knead the dough and patience while it proves (rises). These steps show how to make a simple white loaf.

Add a mixture of water, milk, and yeast. Combine verything together until they form a dough.

Place the dough on a floured board Let it rest for a few minutes. Then knead
it for $5-10$ minutes.

ROLLS

Rolls, and other forms of bread, come in all shapes and sizes. Many, such as bagels, have become popular all over the world.

WHOLEMEAL ROLL

SKILLET BREAD

PIRAGI

WHO EATS THE MOST BREAD?

These ten countries eat more bread per person per year than anywhere else in the world.
104.6 kg (230.5 lb) per person per year. Favourites: bazlama, year. Favourites:
gözleme, and pide.

CHILE
$96 \mathrm{~kg}(211.5 \mathrm{lb})$ per person per year. Favourites: marraqueta, hallula, and coliza.
ARGENTINA year. Favourites: pan de campo, pan de chapa, and chipas.
4 DENMARK
$70 \mathrm{~kg}(154 \mathrm{lb})$ per person per year. Favourites: rye and pumpernickel.
$70 \mathrm{~kg}(154 \mathrm{lb})$ per person per year. Favourites: daktyla, lagana, and pitta.

POLAND

70 kg (154 lb) per person per year. Favourites: rye, wholegrain, flavoured breads, and bagels.

IRELAND

$68 \mathrm{~kg}(150 \mathrm{lb})$ per person per year. Favourites: potato, soda, and barmbrack.
6 HUNGARY
60 kg (132 lb) per person per year, Favourites: lángos,
pogacsa, and pretzets.
60 kg (132 lb) per person per year. Favourites: wholegrain, rye, and suikerbrood.

GERMANY

$57 \mathrm{~kg}(125.5 \mathrm{lb})$ per person per year. Favourites: rye, wholegrain, and wheat-rye.

LEAVENED BREAD

In leavened breads (where the dough rises), yeast or baking powder is added to the flour combined with a liquid like buttermilk to create carbon dioxide gas. This makes the bread light and airy. Thousands of

FLATBREADS
Most flatbreads do not contain yeast, although some, such as pitta bread and naan bread, are slightly leavened. Pitta bread opens up to form a pocket that can be filled with different ingredients. Other flat breads can be used like a plate and then eaten.

WHITE LOAF
UK

RAISING AGENT

PUMPERNICKEL
 Middle East

SEVEN GRAIN BREAD
SEVEN GRAIN

Wholemeal cottage loaf

FLAVOURS
FOR BREAD
Bread can be mixed with lots of different ingredients to make it taste savoury or sweet. Savoury breads can be flavoured with strong tastes, like onion and cheese Sweet-flavoured breads often have fruit, nuts, and spices added to them.

Pasta

Made from flour and eggs, plus a little water or olive oil, pasta has always been a very important food in Italy. Now it is popular throughout the world because it can be cooked in so many different ways. Pasta is also a great source of energy for our bodies.

MAKING PASTA

Pasta is not complicated to make, but it can take a little while. You can make it by hand, or you can use a food mixer. A pasta machine can be used to roll the pasta dough out and cut it into strips, depending on the shape that you want. You can use different types of flour, such as plain, semolina, buckwheat, or wholemeal flour.

1 ADD THE EGGS TO THE FLOUR Make a well in the centre of the flour and then add the eggs.

MIX THE EGGS AND FLOUR TOGETHER Combine the eggs and flour to form a dough, using a little olive oil or water to keep it moist.

SHORT PASTA

These small shapes are good for eating with chunky vegetable sauces, or for baked dishes. Many of their names reflect their shape, such as conchiglie, which means "shells", or ruote meaning "wheels"

CONCHIGLIE

RUOTE

trottole CRESTE DI GALLO

DITALANI

GRAMIGNE

CAVATAPPI

CASARECCE

GARGANELLI

LONG PASTA
Long strands of pasta come in various thicknesses and can be round or flat. They are usually served with creamy sauces or tomato sauces that coat

WHOLEWHEAT
SPAGHETTI

TINY PASTA

Very small pasta shapes are often used in soups, or added to stews, because they are a quick and easy way to make the dishes more filling and serve more people.

RISONI

GRAMIGNA

aNELLI

STELLINE

QUADRETTI

FILINI

ALFABETI

Fish for food

All over the world, fish is an important part of people's diets. It contains protein, vitamins, and minerals. Fish can be cooked in many different ways or even eaten raw.

SALTED FISH, DRIED FISH

Fish does not stay fresh for long, particularly
if it cannot be refrigerated. So fish is often preserved in salt or brine (very salty water), or dried to use later.

SALTED ANCHOVIES

SALTED COD

BOMBAY DUCK (DRIED BUMMALO FISH)

SMOKED FISH

Fish can also be preserved by smoking in one of two ways. Hot-smoked fish are brined, dried, and then smoked quickly. Cold-smoked fish are brined and then smoked for 1-5 days.

KILN-ROASTED SALMON

EEL

ROUND FISH

Round fish have cylindrical bodies, making it possible to fillet (cut) pieces from both sides of their bodies. Depending on their texture, they are known as either white fish or oily fish.

YELLOW FIN

AMERICAN YELLOW PERCH

RAINBOW TROUT

ARCTIC CHAR

FLAT FISH

Meat

Humans have eaten meat for thousands of years. Animals such as cows, pigs, sheep, and chickens are reared on farms especially to provide us with meat. Other animals live in the wild and are hunted for their meat. A good source of protein, meat can be prepared and cooked in many ways.

WHO EATS THE MOST MEAT?

These ten countries eat more meat per person per year than anywhere else in the world.

1	URUGUAY 126.5 kg (279 (b) Favourites: beef, veal, and pork.	
2	USA	
	$\mathbf{1 2 4} \mathbf{~ k g}$ (274 lb) Favourites: beef lespecially steak), chicken, and pork (especially bacon).	
3	CYPRUS	
	117.6 kg (259 lb) Favourites: chicken and pork lespecially tenderloin and preserved forms).	5
4	SPAIN	
	113.1 kg (249 lb) Favourites: beef, pork (especially cured hams), and lamb.	曾
5	DENMARK	
	112.4 kg (248 lb) Favourites: pork Iminced and especially preserved forms) and beef.	
6	NEW ZEALAND	E
	109.9 kg (242 lb) Favourites: lamb and chicken.	
7	AUSTRALIA	
	108.9 kg (240 lb) Favourites: lamb and beef.	
8	CANADA	
	101.1 kg (223 lb) Favourites: beef, venison, pork (especially preserved forms), chicken, duck, and goose.	
9	FRANCE	
	99.9 kg (220 lb) Favourites: beef, lamb, pork, chicken, and duck.	
10	IRELAND	
	99.4 kg (219 (b) Favourites: beef, pork, and lamb.	

BEEF

The meat from a cow is called beef. If the meat comes from a young cow under one month old, it is called veal. Some cuts of beef, such as steaks, are more popular than others and more expensive.

$$
\begin{aligned}
& \text { ed }
\end{aligned}
$$

LAMB AND MUTTON
The meat from a young sheep
under a year old is called lamb. Meat from older sheep or goat is known as mutton. The cuts shown here can be from a sheep or a goat.

POULTRY

Birds that are raised domestically for food are all known as poultry. Types of poultry include chickens, ducks, turkeys, and geese.

WHOLE CHICKEN

GAME

"Game" refers to wild birds and animals that are hunted for food. This includes deer, the meat of which is called venison, and birds such as pheasants and pigeons.

DICED VENISON

VENISON MINCE

DICED CHICKEN

PRESERVED MEATS

Most meat can be preserved in different ways. It can be dried, smoked, or cured by soaking it in very salty water, or made into sausages such as salami that can be eaten raw. Pork is the meat that is preserved most often.

CHOURICO DE PORCO PRETO

VEAL SALAME

SMOKED VENISON

Men's fashion

The style of Western men's clothing, hair, and accessories changes as fast as women's fashion. Even centuries ago men were obsessed with fashion and loved to wear stylish clothes. They often spent more on clothes than women did.

5TH CENTURY CE
MEDIEVAL
Rich young men could become knights. They wore metal armour over their legs, while on top they wore a shirt made from metal mesh, called chain-mail. This made it easier for the knight to move and protected him from stab wounds.

1920s

THE ROARING TWENTIES

Sport was the new trend, so many men dressed in a more casual style, ready for cycling, golf, tennis, athletics, and dancing. Short trousers called plus fours were a popular new fashion.

1950s

1940s
THE FORTIES
There were not many
World War sale during as
producing food and
weaponry was more
important. Men made
do with fewer suits and
dressed simply, although
shoes and hats were
still key accessories.

1980 s and 1990s

2000s

INDIVIDUAL STYLE

There were many looks to choose from in the 1980s and 90s. Suits had padded shoulders in the 1980 and became very slim in the 1990s. were influenced by music such as punk and hip-hop.

ANYTHING GOES
Since the start of the new millennium, fashion for men has become very relaxed. Jeans and trainers are the most popular look. Other casual styles include chinos or khaki trousers, worn with polo shirts, graphic T-shirts, or sweatshirts

Women's fashion

Fashion is the style of what we wear, and how we wear it. The most important thing about Western fashion is that it changes. Hundreds of years ago, styles altered slowly, but now they move on very fast.

1400-1600s

RICH RENAISSANCE

Beautiful soft new materials, such as silk and velvet, became available to the rich. Skirts became wider, and mix-and-match clothes were popular. Sleeves could be untied and taken off for washing.

THRIFTY FORTIES
During World War II, material was scarce. Women dressed sensibly and learned how to make and recycle their own clothes. They still wanted to look stylish, using colourful accessories to add personality to plain outfits.

LITTLE EVENING
 HAT

1930s

GLAMOROUS GOWNS

In this decade, fashion was inspired by Hollywood film stars. Long, slinky dresses were designed to create a slender look. Jackets had padded shoulders, which made the waist and hips look narrower.

1960s

LONG SUIT DRESS

THE "NEW LOOK"

Designer Christian Dior created a new way of dressing in the 1950s. The look was very feminine, with a tight waist, swirling skirt, pearl necklaces, and earrings. Gloves and hats were almost always worn when leaving the house
>1950 s

THE SWINGING

SIXTIES

London designer Mary Quant invented the mini skirt. Hems were the shortest they had ever been in the history of fashion Shiny fabrics, space-age silver knee high boots and lots of eye make-up were popular

SILVER BOOTS WITH
POINTED TOES

POLKA-DOT
MINI DRESS

STRIPED
SEQUINNED MINI

Sports and hobbies

Ball sports

Ball games have been played for at least 3,500 years, and today there are hundreds of different kinds. Some can be played by a single person, while others involve as many as 30 players and need a huge pitch to play on.
 turns to knock an X-shaped group of marbles from a large chalked circle, by

BOULES
Played outside, two teams throw large, very heavy, metal balls, "boules", towards a small target ball known as a "jack The team that gets the ball

TENNIS
Played on a variety of different surfaces. Players hit a felt-covered bouncy ball to each other across a net using tightly strung graphite or fibreglass rackets.
-

REAL TENNIS
The oldest racket sport, real nusual indoor court. Players hit a felt-covered cork ball back and forth across a net, using wooden rackets.

HAND-PELOTA One of many forms of pelota, hand-pelota is played on a court with two walls. The small, hard ball is hit with bare hands

SNOOKER This is played on a large, cloth-covered table with six pockets. Players take turns to knock the 22 balls into the pockets, using wooden cues (sticks)

POOL
Similar to snooker, but played on a smaller table with only eight balls. Two players use cues to knock the coloured balls into the pockets.

RACQUETBALL A fast game, played on an enclosed indoor court. Two or four players use rackets to bounce the rubber ball off the four walls and the ceiling.

CROQUET An outdoor game, players use a small mallet to hit balls through metal hoops placed in the ground. Players take turns and must play the hoops in order; the first to finish wins.

SHOT PUT
Competitors take turns to throw a heavy metal ball (known as the "shot") from a standing position. The person who throws the shot the furthest wins.

SOFTBALL
Softball is a variant of baseball, played using a larger ball on a smaller pitch It can be played inside or en. The ball must be pitched with an underarm motion.

LACROSSE A fierce outdoor spor in which two teams of ten players try to shoot a rubber ball into each other's goals using long sticks with nets at the top.

BASEBALL
Two teams of nine take turns to bat and field. Batters hit a ball thrown by the pitcher bases. The fielding team tries to get the batting team "out"

Two teams of four players ride horses while trying to hit the plastic ball into a goal mallets. Games are divided into periods of time known as "chukkas".

In Gaelic football, two teams of 15 players can kick, "hand-pass" (hit), or run with the ball for up to four steps. A goal is scored by kicking or handpassing the ball over the top of
a high crossbar.

BOWLING

This is also called "ten-pin bowling" This is also called tenin bowting because players try to knock down ten long, bottle-shaped objects, known as oins. Play sins score points for the number of pins knocked down in each set, after having two attempts.

set, after having two attempts.

AMERICAN FOOTBALL

Played by two teams of 11 players on a large pitch the aim is to get the ball into the other team's "end zone and score a touchdown. The team with the ball has four chances to move the ball forwards chunks. If it succeeds, it has four more chances to move another $10 \mathrm{yd}(9 \mathrm{~m})$. If it fails, the other team wins possession of the ball.

RUGBY
Two teams of 13 (rugby league) or 15 (rugby union) Two teams of 13 rrugby league) or 15 (rugby union
players try to move the ball down the pitch by players try to move the ball down the pitch by running with it, passing it to team members, or kicking. The opposing teantries to tacke the player with the ball to gain possession. Points are cored by getting the ball to the opposite end, or by kicking it through one of the tall, H-shaped goals.

AUSTRALIAN RULES FOOTBALL
This game is played by two teams of 18 players on an oval pitch. The aim is to get the ball to the opponent's end of the pitch and score points by kicking the ball through a set of goals. Players may use any part of their body to move the ball, but they cannot throw it. If they run with it, they must bounce it after every few steps.

Football

Football is one of the most popular sports in the world. Its appeal is its simplicity: all you need to play is a ball, and then you can play virtually anywhere - on grass, indoors, in the street, or even on the beach.

THE BALL

The first footballs were made of inflated pigs' bladders covered with leather. They were heavy and not very bouncy, especially if they got wet. Modern footballs are made of high-tech materials and are much lighter and bouncier.

A football pitch must be flat and rectangular. The field of play is marked by white lines, and the goals must be a standard size. However, the length and width of the pitch may vary.

THE PITCH

Technical

THE GAME

During a football match, two teams of 11 players try to kick a ball into each other's goal. The aim is to score more goals than the other team. If no one scores any goals, or the scores are equal at the end of the game, it is called a draw.

LASTS 90 MINUTES
 45 MINUTES

has two teams OF 11 PLAYERS
_ Referee
Goal line

PLAYERS AND POSITIONS

FORMATIONS

Before a match, the manager organizes the players in a way that he or she thinks will help them to win. This is known as the formation. The formation is usually a set of three or four numbers, which show how many defenders, midfielders, and forwards there are. Often teams will start a match in one formation and then change during the game.
goalkeeper Every team must have a goalkeeper,
so he or she is not
included in the formation.

4-4-2
In this basic formation there are four defenders, four midfielders, and two forwards. The two central midfielders have different roles - one have different roles - one

3-5-2 This is an attacking formation. The two wide midfielders, often known as wing backs, ave to help out in bo defence and attack.

4-5-1
This is a defensive formation. There is only one striker, who receives support from the wide midfield players.

FIFA WORLD CUP

The Fédération Internationale
de Football Association (FIFA) governs football around the world. Since 1932 FIFA has organized an international competition to find the best football team in the world. It is called the FIFA World Cup and the finals tournament is held every four years. So far, only eight different countries have ever won it.

BRAZIL
5 wins - 1958, 1962
1970, 1994, 2002

GERMANY
4 wins - 195
1990,2014

ITALY FRANCE
4 wins - 1934,
$1938,1982,2006$

ARGENTINA
${ }_{\text {2 }}^{\text {2 }}$ 1978, 1986

AROUND THE WORLD

FIFA has 208 members, but each
continent, apart from Antarctica, also has its own football federation. These govern the game in the region and organize international competitions at club and country level.
UEFA (EUROPE) AND CAF (AFRICA) ARE THE LARGEST FEDERATIONS, EACH WITH 52 MEMBERS

RULES OF FOOTBALL

During a match, a referee, assisted by officials on each touchline, makes sure the game is played fairly. Football has 17 official rules, or laws. Here are the three most fundamental rules, which apply whether you are playing in the park with friends, or in the World Cup

O NO HANDS

A goalkeeper is allowed to touch the ball with his or her hands during a match, but only in the penalty area. If another player touches the ball with his or her hand, the opposition wins a free kick. If a defender touches the ball with his or her hand in the penalty area, it is a penalty.

FOUL PLAY

If a player commits a foul, such as a bad tackle or a handball, a free kick (or penalty if it is inside the penalty area) is awarded to the opposition. For a bad foul or a deliberate handball, a player is shown a yellow card. If that player then commits a second yellow-card offence, he or she will be shown a red card and "sent off" from the pitch. For serious foul play a player can be shown a straight red card.

O OFFSIDE

The purpose of the offside rule is to make it harder for a side to score goals. Attackers cannot just stand by the goal waiting to score there must be at least two defenders between them and the goal line when the ball is passed to them. One of these defenders is usually the goalkeeper. If a player is ruled offside, the defending team is awarded a free kick.

The attacking team is the one in possession of the ball and which moves towards the opponent's goal. The players aim to pass the ball to each other and create a goal-scoring opportunity. They have to work together and try to avoid the opposing team. Here are some of the key ball skills attacking players need.

American football

Also known as gridiron in some countries, American football is one of the most popular sports in the United States. Professional football (the NFL) and college football are the most popular forms of the game.

EQUIPMENT

American football is a full-contact sport. Every part of the body needs to be protected against charging players. A helmet is the most vital piece of kit, as head clashes in a game are common. Players also wear body armour worn over soft shock-pads, which absorb any hard blows; this gives them a top-heavy appearance.

PADDING
A range of pads can be worn to protect specific parts of the body. The sort of protection a player wears often depends on the position in which he or she plays.

THE GAME

Two teams of 11 players compete during four periods of play (known as "quarters"). The aim is to score points by advancing an oval ball into an opponent's end zone (to score a touchdown) or by kicking it through the goal posts (to score a field goal).

4 QUARTERS OF 15 MINUTES

has 2 TEAMS OF 11 PLAYERS

SCORING POINTS

The objective in American football is to score more points than the opposition. Points can be scored in five ways.

TOUCHDOWN

A touchdown is scored if a team advances the ball into the opponent's end zone. The ball can either be run over the line or passed to a teammate in the end zone. A touchdown is the game's most valuable scoring play, worth six points.

POINT AFTER TOUCHDOWN

After a touchdown, a team can score an extra point by kicking the ball through the goal posts.

TWO POINT CONVERSION

Teams do not have to opt for a kick after scoring a touchdown
Instead, they could opt to score a try. In this instance, the team has a single play to score a touchdown. If successful, the team is awarded an extra two points

FIELD GOAL

A field goal is scored when the ball is kicked through the goal posts. It is worth three points.
THE BALL
The ball is oval in shape. It is 28 cm (11 in) long, has a circumference of 71 cm (28 in) at its widest point, and weighs $425 \mathrm{~g}(15 \mathrm{oz})$.

SAFETY

A safety, worth two points, is awarded if an opponent is tackled or spills the ball in his own end zone and it goes out of play.

THE FOOTBALL FIELD
The football field is bounded by long sidelines and shorter end lines, forming a large rectangle. End zones are located at either end of the field. The 100 yd (91 m) area in between is divided by lines that cross the field every 5 yd (4.9 m). Most fields are covered in grass, but some have an artificial surface.

10 YARDS AT A TIME

Territory and possession of the ball are the keys to success in American football. The team in possession of the ball is called the offence. It has four chances, called downs", to advance the ball 10 yd (9 m) towards the opponent's end zone, either by running with the ball or by throwing it. If successful, the offensive team is awarded another four downs. If it fails to advance $10 \mathrm{yd}(9 \mathrm{~m})$, or if it loses possession of the ball during a play, possession of the ball passes to the defensive team.

BASIC DEFENCE

The aim of the defence is to stop the offence from gaining the $10 \mathrm{yd}(9 \mathrm{~m})$ they require to gain four new downs. Many teams use a formation called the 4-3 defence, in which four defensive linesmen line up in front of the three linebackers. Two safeties play behind to stop longer passes and runs, while two made to the wide roceivers.

There are five positions in defence:
DE Defensive end
DT Defensive tackle
LB Linebacker
CB Cornerback
Safety

BASIC OFFENCE

The "Standard I Formation" is a common attacking play using five offensive linesmen. The "I" refers to the line formed by the quarterback, fullback, and tailback, or running back. A tight end lines up on one side, with a wide receiver at each end.
There are eight positions in offence
WR Wide receiver
TE Tight end
OT Offensive tackle
Guard
$\begin{array}{ll}\text { C } & \text { Centre } \\ \text { QB } & \text { Quarterback }\end{array}$
FB Fullback
TB Tailback, or running back

PLAYS

American football is punctuated by a series of plays, or downs Offensive plays aim to advance the ball towards the opponents' end zone. Defensive plays aim to stop the offence moving forwards Some of the most well-known plays are described below.

TAILBACK OFF-TACKLE
The tailback off-tackle is the most common running play in offence. The quarterback hands the ball to the tailback, who runs through a hole created by the offensive tackle and the tight end

SWEEP

The sweep is an organized offensive running play in which a tailback receives the ball from the quarterback and then runs parallel to the line of scrimmage. This gives the fullback and offensive linesman time to create a gap for the tailback.

HAIL MARY
The Hail Mary is a passing play in which the quarterback throws a long ball towards one o a number of receivers. The play is often used as a last resort by a trailing team towards the end of the game.

THE BLITZ
The blitz is a defensive tactic used to combat passing plays. The aim is to put the opposition quarterback under pressure by swamping the offence with defenders.

KEY SKILLS

Different positions require different skills. For example, quarterbacks need to be good at throwing; wide receivers must have lightning acceleration and be able to catch the ball; and defenders must be excellent tacklers and blockers

PASSING THE BALL
One of the most important duties of a quarterback is to pass the ball to a receiver. A strong, accurate pass is vital, as the quarterback may have to throw the ball over a long distance.

THE SNAP
The centre snaps the ball through his legs to the quarterback.

REFEREE'S SIGNALS

If a rule is broken during the course of a game, an official will bring play to a halt by waving a yellow flag. The referee then conveys the decision by using a hand signal and making an announcement.

KICKING
All American football teams have a specialist kicker. His or her role is to kick for field goals or for the extra point following a touchdown or a 7 goal attempl, the holder stands 7 ya (0 m) behind the centre, who snaps the ball to him. The holder catces ball and sets it up for the kicker. The kicker steps forwards and swings his foo through the ball, aiming to send it between the goal posts.

2 THE PASS After collecting the ball, the quarterback grips the ball by the laces and passes it point first. The ball is spun as it is thrown, making it fly straight. off a defender.

DEFENCE

 is to prevent a defender side from advancing with the ball. He or she can do this by tackling the offensive player who is carrying the ball.

INTERFERENCE A penalty in which a player has interfered during a play.

FALSE START This is called when a member of the offence moves illegally before the ball is snapped.

HOLDING

A penalty in which a player of either side has illegally held an opponent

FIRST DOWN The offence advances 10 yd (9 m) within four downs, so a new series of downs is called

OFFSIDE A defensive player is on the wrong side of the line of scrimmage at the start of play.

ILLEGAL BALL
TOUCH
A penalty in which the ball is illegally touched, kicked, or batted.

Baseball

Baseball is played in more than 100 countries around the world, including China, Japan, Venezuela, and Cuba. However, the game is often mostly closely associated with the USA, where it is one of the most popular sports.

EQUIPMENT

The most essential equipment for a game of baseball is, of course, the bat and the ball. As the ball can travel at speeds of up to $160 \mathrm{~km} / \mathrm{h}(100 \mathrm{mph})$, some safety gear is also required.

THE GAME
Two teams take it in turns to bat and field. The batting team tries to score "runs" by hitting the ball and then running around four bases. The fielding team tries to get the batting team "out" (stop it scoring runs). Three "outs" ends the inning and the team with the most runs after nine innings wins.

NO TIME RESTRICTION

9 TURNS (INNINGS) EACH, PLUS EXTRA IF SCORE IS TIED

2 TEAMS OF 9 PLAYERS

GLOVES
Fielders wear a large, padded leather glove to make it easier and safer to catch the ball. The catcher also has a special mitt.

THE FIELD

The playing area is divided into the infield and the outfield. The infield is also known as the "diamond" and is where the batter, pitcher, and catcher all stand. It also contains the four bases and some fielders. The rest of

A pitcher's job is to get the batter out. He or she needs to make it difficult for the batter to hit the ball - known

PITCH Finally, the pitcher throws his arm forwards, releasing the ball when the arm is fully extended.

WIND UP
The pitcher starts with his back foot on the pitching rubber and then raises his front leg to waist height.

PITCH STYLES

The way that the pitcher grips or releases the ball can affect the speed, force, and angle of the pitch. Here are some common pitches.

WORLD SERIES

Every year the winners of the American League and the winners of the National League compete in a set of games, known as the World Series. These teams have won the most World Series, including some, such as the Giants, who have played in more than one city.
NEW YORK YANKEES 27
ST LOUIS CARDINALS 11
PHILADELPHIA/OAKLAND/ KANSAS CITY ATHLETICS 9

4 BOSTON RED SOX AND NEW YORK/SAN FRANCISCO

 GIANTS 8
5 BROOKLYN/LOS ANGELES DODGERS 6

FASTBALL
This is a popular pitch. Two fingers over the top of the ball allow it to be released at great speed.

CURVEBALL
A twist of the wrist gives this pitch topspin, which causes it last moment.

TAKING A TURN The best curveballs cause the batter to swing at the wrong spot.

SLIDER

Gripped slightly off-centre, the slider is not quite as fast as a fastball, or as curved as a curved ball.

6 CINCINNATI REDS AND PITTSBURGH PIRATES 5

DETROIT TIGERS 4

INTERNATIONAL

BASEBALL

Baseball was dropped as an Olympic sport in 2008 and the last Baseball World Cup was held in 2011, so the most prestigious national competition is the World Baseball Classic Launched in 2006, Japan won the first two competitions, but the Dominican Republic were victorious in 2013.

BASE RUNNING

As soon as the batter hits the ball, they need to start running to first base. However, they must reach the base before a fielder can throw the ball to a team-mate standing on the base.

TAG OUT

BATTING

Batting requires strength, skill, timing, and the ability to outthink the pitcher. Most professional players are considered to be good hitters if they can safely hit three out of ten pitches.

1 STANCE side-on. The legs are wide apart, the are wide apart, elbows bent, and above the head.

Home plate

STRIKE!

The pitcher must pitch the ball into the area known as the "strike zone". If the batter does not swing at all, misses the ball, or hits it into foul territory, the umpire at the home plate will call "strike". If a batter has three strikes, he or she is out, and it is the next batter's turn.

STRIKE ZONE
The strike zone is the area above the home plate between the batter's knees and the mid-point of his or her torso
 a full swing

 Hips rotate to generate power

Basketball

Basketball is a fast-paced ball sport, invented in Massachusetts, USA, in 1891 as an indoor game to keep students fit during the winter. It was originally played by shooting the ball into fruit-pickers' baskets, which is how the sport got its name.

EQUIPMENT

One of the attractions of basketball is that you need very little equipment to play - just a ball and two baskets. Players do not even need special clothing, just suitable shoes for running on court.

BALL
A modern ball is made of rubber or a synthetic composite covered in leather. It is $75-78 \mathrm{~cm}(30-32$ in) in circumference and weighs $600-650 \mathrm{~g}(21-23 \mathrm{oz})$.

BASKET AND BACKBOARD The basket is a 45 cm (18 in) hoop with netting hanging from it, mounted on a
vertical backboard.

KEEPING SCORE

Spectators keep track of the score on a scoreboard A basket made inside the three-point line scores two points. Baskets made from beyond the threepoint arc score three points. When shooting

THE GAME
Two teams of five players each try to score points by shooting a ball through a hoop, which is $3.05 \mathrm{~m}(10 \mathrm{ft})$ above the ground. The winning team is the one that has scored most points by the end of the game.

HAS 2 TEAMS OF 5 PLAYERS

LAWS OF THE COURT

The NBA (National Basketball Association) governs the professional game in the USA. The NBA sets out only 12 basic rules, although each rule is divided into many clauses and subsections. Differing governing bodies worldwide have slightly different rules.

PERSONAL AND TECHNICAL FOULS

If a team commits a foul, the opposing team is given possession of the ball. If a team is fouled while shooting, they are awarded one or more shots at the basket. Fouls can be either personal - for example for pushing, blocking, or holding an opponent - or technical - for offences such as deliberate time-wasting or arguing with the referee. In the NBA, once a player has recorded six fouls, they may take no further part in the game.

O VIOLATIONS

When a player breaks the rules, they commit a foul. For instance, players must dribble (bounce the ball in front of them) as they run. If they do not, they commit a foul known as "travelling"

TIME LIMITS
Basketball is designed to be a fast-moving, attacking sport. In the NBA, once in possession of the ball, a team must attempt a shot within 24 seconds; if it does not, possession passes to the other team.

THE COURT

A standard basketball court is a rectangle 15.2 m $(50 \mathrm{ft})$ wide by $28.7 \mathrm{~m}(94 \mathrm{ft})$ long. Most, but not all, have a surface of polished wood. The various markings on the court help to regulate play.

SKILLS AND TECHNIQUES

All basketball players need good ball-handling skills. To be
successful, a team needs to be able to pass to each other,
dribble, shield the ball from opponents, and, most importantly
shoot baskets.

SLAM DUNK
The player runs up, jumps very high, and, with one or two hands, aims the ball downwards into the basket. The slam dunk is a popular shot because, as long as the player can jump high enough, its success rate is high.

DRIBBLING

Dribbling is the name given to bouncing the ball
continuously. A player must dribble while moving
with the ball, or else they are penalized for travelling

Using the hand furthest from your opponent, bounce the ball hard towards the ground.

2 Running forwards, control the ball with the fingertips as it rises back up towards you.

Keep your hand directly over the ball - if you touch the underside of the

MOVING

Once a player has stopped dribbling, he or she is not allowed to
dribble for a second time. Instead, the player must keep one foot
on the ground and pivot (swivel) on it before shooting or passing.

The player stops dribbling or catches e ball. One of his feet must become the pivot foot.
The pla round on his pivot foot ooking for opportunities to shoot or pass the ball.

If a player drags his pivot foot or lifts it ff the ground, he will be penalized for travelling.

PLAYING THE GAME

Basketball players require great athleticism, excellent handeye coordination, and, because it is such a fast-paced game. superb stamina. They also need to be tall. Players are rarely under $1.8 \mathrm{~m}(6 \mathrm{ft})$ and are often as tall as $2.1 \mathrm{~m}(7 \mathrm{ft})$.

- Large hands enable a player to grip the ball one-handed

BASKETS AND REBOUNDS If a team scores a basket, the game restarts with the other game restarts with the other behind the baseline under behind the baseline under
their own basket. If the shot is unsuccessful, the players is unsuccessful, the players compete for a rebound. If the altacking team wins the ball, they can shoot again, but if the defending team wins it, they will try to move the ball
to the other end of the court.

he backboard is matterproo material called Plexiglas

OFFICIALS' SIGNALS

A team of officials oversees a game. The timekeeper starts the clock when the ball is in play and pauses it whenever play is stopped The shot-clock operator makes sure that the eam in possession shoots within a certain time There are two referees, who make gestures and signals to indicate aspects of play and breaches of the rules.

CHARGING One arm out to the side indicates that an attacking player has run into a defender.

TRAVELLING Arms rotating indicate that a player has moved with the ball without dribbling it

TWO-POINT SCORE eft arm raised with two fingers showing indicates two-point basket to the scorakeeper.

JUMP BALL
Both arms up mean that two players have a grip of the ball, so the referee is calling a jump ball.

BLOCKING
Clenched fists against the waist signal that one player has blocked the way of another.

THREE-POINT SCORE Both arms up, with three fingers up on each hand, signals a basket worth three points.

Racket sports

There are many different racket sports, but they all need similar skills: good hand-eye coordination, quick reactions, speed, fitness, and agility. Most racket sports can be played by two people (1 vs 1, known as singles) or four people (2 vs 2 , known as doubles).

TENNIS

Players take it in turns to serve and can score points whenever their opponent fails to return a ball over the net or hits the ball out of play. Tennis lalso known as lawn tennis) matches are made up of games and sets, with players needing to win six games to win a set. Matches can last for hours as a player must always win the final set by two games.

BEST OF THREE OR FIVE SETS

SINGLES OR DOUBLES

TABLE TENNIS

A player wins a point if his or her opponent cannot return the ball or if the return does not land on the table. The first player to score 11 points wins the game. However, if both players score 10 points, the first player to gain a two-point advantage wins the game. Table tennis is also known as ping pong
 SEVEN GAMES

SQUASH

Squash is played on a four-walled court and players take it in turns to serve. They can win points if their opponent fails to hit the ball after it has bounced once, or if they hit the ball out of bounds. A player needs 11 points to win the game, but if the score is tied at $10-10$, a player needs to win by two points.

THE BEST OF 3 OR 5 GAMES

SINGLES [DOUBLES CAN BE PLAYED ON CAN BE PLAYED ON
A BIGGER COURT)

EQUIPMENT

Most rackets have a metal or wooden frame containing a network of strings. The tightness and density of the strings affects the way in which the racket controls the ball. What a ball is made of, its size, and weight can also affect the speed and style of the game.

Tennis balls are made of rubber, covered in felt and weigh 56-59 g (1.9-2 oz). During a match, balls may be hit so hard that they lose their bounce and need to be replaced.

SQUASH BALL
Squash balls are made of hollow rubber. A coloured dot shows how fast or bouncy the ball is - orange is the slowest and blue the fastest.

Tennis

Playing tennis is fun and helps you to gain some sporting skills. To play the game well, you have to be fast on your feet, quick-thinking, and sharp-eyed. World-class players make tennis exciting to watch, too.

THE COURT

All tennis courts have the same measurements

THE MATCH

A tennis match is played in games and sets between two or four people. A game is a series of points won or lost, and a set is a series of games. The player who wins the best out of three or five sets is the match winner. Matches have no time limit.

A MATCH CAN BE 3 OR 5 SETS

SINGLES: 2 PLAYERS DOUBLES: 4 PLAYERS

SCORING

Both players start with a score of zero, or "love". The first point you win scores 15 . If you win a second point, the score is 30. A third point scores 40 . One more point can win the game, provided you are already two points ahead of your opponent.

THE "LOVE" SCORE IN
TENNIS MAY COME FROM
"L'OEUF", FRENCH FOR "EGG"-
WHICH IS ZERO-SHAPED

TIE-BREAK

If the score is six games all, a tie-break is played. This game has special rules. A tie break, and the set, is won when a player wins seven points and is at least two points ahead. There is no tie-break in the final set.

EQUIPMENT

Modern tennis equipment is made of lightweight materials that are strong and long-lasting. Rackets come in varying sizes. It is important to choose one that is the right weight for you and feels comfortable to hold.

THE SERVE

Also called the service, this stroke is the most important one to learn. Every point in a game starts with the serve. It is a tricky technique to master. Even professionals do not hit the ball over the net every time - but a server is allowed to have two attempts per point.

POSITION Stand behind the baseline, just to
the right of centre.

PREPARE 2 Turning sideways, hold the racket and ball in front of you.

3 toss 3 Toss the ball up and bend your racket
arm back, ready to hit.

FOREHAND DRIVE

Using the forehand is the skill that tennis players learn first. With practice, it can become a very powerful stroke. The ball must bounce once before you hit it.

MEET THE BALL
Swing the racket forwards to meet the ball in front of your body.
Hit the ball and follow through the stroke with the racket.

BACKHAND

DRIVE

You play this stroke when your opponent hits the ball towards the side opposite your racket arm.

SWING BACK
As the ball comes, turn your shoulders to the side and swing your racket back.

STEP
With a firm grip on the racket, step forwards out your racket arm to out your racket arm your body.FOLLOW THROUGH Keeping the swing going, follow through the shot with your racket. Do not take your eyes off the ball until it is safely over the net.

FOREHAND VOLLEY

Volley shots are played close to the net. Players must hit the ball before it bounces. The action is short, fast, and punchy, and does not use a big swing.

REACH
Stretch out your racket arm and step forwards. Watch the ball all the time

SHORT FOLLOW-THROUGH After making contact with the ball, finish the stroke with a short follow-through.

THROW
Throw the racket ove your head and hit the ball. Follow through the stroke.

MAJOR WINNERS

The four biggest annual tennis
tournaments, known as "Grand Slams are: Wimbledon, the US Open, the Australian Open, and the French Open. Below are the top five singles Grand Slam winners.

STEFFI GRAF Germany - 22 wins
SERENA WILLIAMS USA - 21 wins
CHRIS EVERT USA - 18 wins
MARTINA NAVRATILOVA
Czechoslovakia/USA - 18 wins
ROGER FEDERER Switzerland - 17 wins

THE SMASH

The smash shot uses an action similar to that of the serve. It hit the ball as it comes down from high in the air, and requires fast thinking. You may have to spring up to reach the ball. Fully stretch your racket arm and reach up with the other arm. Drop the racket head behind your back and then accelerate it forwards to hit the ball.

Turn your body sideways and position yourself under the ball

BACKHAND SLICE

Once you have mastered the basic backhand, you can try the
more challenging backhand slice. A ball hit with this stroke spins
and lands low, so it can take your opponent by surprise

Take the racket
back as you would
or the backhand
drive, with the
head angled
slightly up.

SLICE
tep into the shot and slip the head of the racket under the ball. Hit the ball when
it is just in front of your body.
 FOLLOW-THROUGH
Keep your arm straight and follow through with a short chopping movement important, as it drives the ball forwards.

BACK
Two hands can give extra strength and power a backhand drive.

Athletics

The athletics arena is home to three main different sports styles: running, jumping, and throwing. Competitors need speed, stamina, agility, or strength, depending on their chosen event. All-round athletes have all these skills.

SET UP

Athletics events are also known as "track and field events" Running races take place on the track, and jumping and throwing events are held in an area known as the field. There are also two walking events on the track.

ATHLETICS TRACK

The athletics area is marked out by a running track $400 \mathrm{~m}(328 \mathrm{yd})$ in circumference, with the field area for throwing and jumping events inside

JAVELIN
Athletes compete to see who can throw the javelin (which is a bit like a spear) the furthest down the field. Men throw a slightly longer javelin than women. Javelin

SHOT PUT

The "shot" is a
heavy metal ball that competitors try to throw ("put") as far as they can At the beginning of each put, the shot is held close against the neck, and the shot putter spins around in a circle before hurling the shot forwards.

DISCUS

A discus is a fairly flat, heavy disc that spins through the air when it is thrown hard. The women's discus weighs $1 \mathrm{~kg}(2.2 \mathrm{lb})$ while the men's weighs $2 \mathrm{~kg}(4.4 \mathrm{lb})$. The winner is the person who throws it furthest.

MIDDLEDISTANCE RUNNING

These races are run over 800-3,000 m, and some, like the steeplechase, include hurdles and water jumps. The runners start off in lanes but do not usually have to stay in their lane throughout the race.

LONG-DISTANCE RUNNING

Races that are more than $3,000 \mathrm{~m}(3,280 \mathrm{yd})$ long are called "long-distance" races and demand great stamina. The events may take place in a stadium or along roads and paths. Many cities hold annual marathons, which are 42.2 km (26.2 miles) long

SPRINTING

These fast races are run over distances from $100-400 \mathrm{~m}$. Sprinters push off from the blocks and hit top speed almost immediately.

SPRINT EVENTS

In the Olympics, there are eight sprint events. Some include hurdles.

100 m	110 m hurdles $($ men only $)$
200 m	400 m hurdles
400 m	$4 \times 100 \mathrm{~m}$ relay
100 m hurdles (women only)	$4 \times 400 \mathrm{~m}$ relay

MULTI-PART EVENTS

In these track and field events,
competitors need to be all-round athletes with a combination of skills.

O HEPTATHLON

This two-day competition for women includes seven events: $200 \mathrm{~m}, 100 \mathrm{~m}$ hurdles, high jump, shot put, long jump, javelin, and 800 m .

DECATHLON

Men compete in ten events in this two-day competition: 100 m , long jump, shot put, high jump, $400 \mathrm{~m}, 100 \mathrm{~m}$ hurdles, discus, pole vault, javelin, and $1,500 \mathrm{~m}$.

DISTANCE EVENTS

There are eight Olympic middle- and longdistance events on the track. The $3,000 \mathrm{~m}$ steeplechase includes 35 jumps, seven of which are water jumps.

HAMMER

The "hammer" in athletics is nothing like a normal hammer - it is a heavy metal ball attached by a wire to a handle. The thrower whirls the hammer around his or her head several times before releasing it. Men throw a heavier hammer than women.

Hammer

800 m	$10,000 \mathrm{~m}$
$1,500 \mathrm{~m}$	Marathon (42.4 km)
$3,000 \mathrm{~m}$ Steeplechase	20 km walk
$5,000 \mathrm{~m}$	50 km walk (men only)

RUNNING ALONE
Most races involve
individual runners.

RUNNING A RELAY
Teams of four run one leg of the race each, passing on a baton.

Winter sports

Sports have taken place on snow and ice for centuries. Today, most winter sports are variations of skiing, sledding, or ice skating. These sports have their own multi-sport tournament, the Winter Olympic Games, which takes place every four years.

ALPINE SKIING

Alpine skiing is an exhilarating sport of speed and skill. There are five types of alpine ski competition. Two of the disciplines - downhill and Super-G - focus on speed. Slalom and giant slalom are technical events, in which a competitor's skill will win the day. The fifth event called combined (a mix of downhill and slalom), tests both speed and technique.

TOP ALPINE SKIERS

KJETIL ANDRE AAMODT (NORWAY) medals, four of them to win eight Olymp (1992, 2002, 2006) and combined (2002).

O JANICA KOSTELIC (CROATIA)
 The only woman in history to win four Winter Olympic golds - three in 2002 and one in 2006.
 ALBERTO TOMBA (ITALY)
 The dominant technical skier of the late 1980s and early 1990s.

High boots

Ski binding
ALTERNATIVE SKIING METHODS
Freestyle skiing made its modern Winter Olympic debut in 1992. Disciplines include aerials, ski cross, half-pipe, and slopestyle. Cross-country skiers use alpine skiing and jumping techniques to complete courses up to 50 km (31.1 miles) in length.

SR
modern
half-pipe, and
skiers use
techniques
50 km

SNOWBOARDING

Developed in the USA in the 1960s, snowboarding has enjoyed an explosion in popularity in recent years. Inspired by skateboarding, skiing, and surfing, snowboarders descend a slope while standing on a ski-like board attached to their feet.

THE WORD "SLALOM" COMES FROM THE NORWEGIAN WORD "SLALAM", MEANING "GENTLE SLOPE"

DIFFERENT COURSES

Every alpine-ski discipline tests different skills, so the courses for each are set out differently A downhill course has the fewest gates (poles) whereas a slalom has many poles through which the skier must pass

DOWNHILL

GIANT SLALOM

SUPER-G

SLALOM

SLIDING SPORTS

sliding sports are among the fastest winter sports. They include bobsleigh, luge, and skeleton. Competitors in each of these sports propel themselves down a specially constructed track and try to reach the bottom in the fastest time possible.

BOBSLEIGH Bobsleigh was invented in
Switzerland in the 19th century. The modern sport sees teams of two or four teams of two or fou racing down ice covered tracks in
steerable sleds.

THE TRACK

 All sliding sports take placon a specially constructed on a specially cons The tracks feature left and right turn
S-curves, 180 -S-curves, $180-$
degree bends (called "Omega"), and hairpins.

SKATING

Ice skating originated in Finland more than 3000 years ago. Originally, skates were made from animal bone strapped to the bottom of the foot Today, competitive ice skating on steel blades has three disciplines: speed skating, ice dancing,

SPEED SKATING Speed skating sees athletes race on around an oval ice track. Events range
from 500 m to $5,000 \mathrm{~m}$

FINAL PUSH
All members of the team must jump into the sled within $50 \mathrm{~m}(55 \mathrm{yd})$ of the start line.
and figure skating.

ICE DANCING Ice dancing competitions take place on an ice rink. It is a couples ev
and judges give and judges give marks for each
performance.

[^0]

Cycling

Cycling is a global sport, enjoyed by people of all ages. Most ride for fun, but many compete in disciplines such as track or road racing, or in BMX or mountain bike events.

Water sports

Water provides the perfect environment to show off sporting skills, from impressive tricks on a board to acrobatic dives into the water. Water sports are exciting and require great balance, strength, and endurance to keep control in the water.

SWIMMING

Many swimmers take part in races in swimming pools, but some will even cross seas or endure cold-water races in the peak of winter. Swimming requires agility and strength to move through the water as quickly as possible.

The refere makes sure the race is fair

Timekeepers keep track of how long each swimmer takes to finish

Some swimmers and others may wear shorts

The false start The starter recall rope drops begins the race

都
-

DIVING

Competitive divers
dive from a variety of heights. They must acrobatically twist and flip in the air before they hit the water. This requires great muscle strength, as divers mus move their bodies like gymnasts. wear full swimsuits

SOLO SWIMMING
To glide through the water at great speed, swimmers must perfect their arm strokes and leg kicking so each movement propels them forwards.

BOARD SPORTS

Board sports are popular on lakes and along coasts where people can use the power of the wind, waves or boats to race along at high speeds or perform amazing tricks. They usually require excellent balance and strength to control the board and avoid falling off.

SURFING

Surfers need good balance to control a surfboard with their feet. The strength of the breaking waves pushes the board forwards.

KITESURFING Kitesurfers use the power of the wind to speed acros the water and jump high into the air.

WATER-SKIING
Water-skiers are pulled along behind a boat on one or two skis, or even barefoot. They compete in slalom, jumping, or trick events.

WAKEBOARDING Wakeboarders are pulled along on a board by a boat and use the boat's wake to perform flips and jumps.

WINDSURFING
Windsurfers use a large sail to power them across the water in speed races or to perform impressive tricks.

FLOATER

The floater is a popular trick to help surfers gain speed when surfing a wave or to clear a section of the o set up for another trick.

ROWING

Rowers face backwards and pull oars through the water to propel their boat as fast as possible. Typically rowing is done in rivers or lakes, but some rowers even cross oceans

WHITE WATER SPORTS

White water is made when rivers pass through rocky areas and create rapids. Adrenaline-seekers try to manoeuvre crafts such as kayaks, canoes, and rafts as they travel down the turbulent rivers in races, slaloms (winding races), or just for fun

RAFTING
Groups can share the thrill of paddling an inflatable raft down the rapids.

CANOEING
Canoeists use a paddle with one blade and are either in a sitting or kneeling position in their boat.

ESKIMO

 ROLL Kayakers use an eskimo roll when they have capsized to tur the kayak theright way up.

3 Use the paddle to make sure you are stable, then lift your hea

INUIT PEOPLE CREATED
KAYAKS MORE THAN 4,000 YEARS AGO FROM
WHALEBONE OR WOOD AND ANIMAL SKINS

KAYAKING

Kayakers use a paddle with a blade at each end to move quickly
through the water.

Sailing

Sailing has been a mode of transport for thousands of years. Today, it is also an exciting sport and hobby, which requires quick thinking, confidence, and strength. Sailors take part in a number of competitive races around the world, although many sail the seas simply for fun.

SAILING CLOTHING

Special clothing helps sailors keep warm and dry when on the water, especially in bad weather. A buoyancy aid or life jacket is worn to keep sailors safe if they fall into the water.

NAVIGATING

Tides, currents, and shallow waters can make the ocean a dangerous place. Many sailors use GPS (Global Positioning System) to plan their course, but in case this fails, knowing how to navigate is a vital skill.

WIND DISPLAY Shows the the wind.

COURSE PLOTTER
The plotter shows which compass points to follow when it is placed over a map.
 distance on chart distance on char

NAUTICAL CHARTS
Charts are detailed maps of a sailing area, with hazards and reference points shown

TYPES OF BOATS

Boats are organized by class, which is determined by their length. Small boats are ideal for short-distance racing, as they move quickly. Large boats are better for long-distance sailing as hey can endure more treacherous seas than a small dinghy

LASER CLASS A popular $4.2 \mathrm{~m}(14 \mathrm{ft})$ dinghy for solo sailing

TORNADO CLASS A $6.1 \mathrm{~m}(20 \mathrm{ft})$ catamara with two body sections that increase the boat's speed.

470 CLASS A $4.7 \mathrm{~m}(15.4 \mathrm{ft})$ dinghy for a crew of two.

OCEAN RACER (VOLVO 70) CLASS $21.3 \mathrm{~m}(70 \mathrm{ft})$ yacht with a $31.5 \mathrm{~m}(103 \mathrm{ft})$ mast.

49ER CLASS A $4.9 \mathrm{~m}(16 \mathrm{ft})$ dinghy with CCA spinnaker for speed.

AMERICA'S CUP CLASS A $24 \mathrm{~m}(79 \mathrm{ft}$) yacht used in the America's Cup race between 1992 and 2007

THAN TRAN SPORT, RATHER OR WARFPORTATION IN THE NETHE, BEGAN IN THE TRLANDS

THE 1600s

USING THE WIND

Sailors can adjust their sails to make the most of the wind. The sails can be angled to capture the wind, so the boat is pushed forwards in the direction it faces A sailing boat can travel in any direction except straight into the wind (the no-sail zone).

KEY
No-sail zone
In this area the boat would be sailing into the wind. The sails would not work
-- Close haul
The closest a boat can sail to the wind without entering the no-sail zone. Both sails are pulled in tight to the centreline.

- Close reach

Similar to a close-hauled course, but the boat is turned away a little more from the wind and the sails are loosened further.

Beam reach

Sails are eased halfway and the wind is coming directly across the side of the boat.

Broad reach
Sails are nearly full and the boat is on a course away from the wind (downwind).
-- Run
Sails are full and the wind is directly behind the boat.

TACKING AND GYBING

There are two ways of turning a boat: tacking and gybing. Tacking is a safer, slower way of turning as it allows more control of the sails. Gybing is faster and is especially good for racing

TACKING
Turn the boat to face upwind.

OCEAN RACING

ROUTE DU RHUM Singlehanded racers must work with fast winds in this high-speed journey across
the Atlantic Ocean.

VOLVO OCEAN RACE In this extreme race, nineperson crews sail around the world day and night

GYBING
Turn the boat to face downwind.

RECORD BREAKERS

Since sailing began as a sport several hundred years ago, many sailors have set impressive around-the-world sailing records.
O JOSHUA SLOCUM (CANADA), 1895-98
The first person to sail solo around the world, with just three stops.

0

ROBIN KNOX-JOHNSTON (UK), 1969
The first person to sail solo around the world without stopping
O KAY COTTEE (AUSTRALIA), 1988
The first woman to sail solo around the world without stopping.
O ELLEN MACARTHUR (UK), 2005
Became the fastest person to sail solo around the world without stopping, in 71 days, 14 hours, 18 minutes, and 33 seconds.

FRANCIS JOYON (FRANCE), 2008
Broke Fllen MacArthur's record to become the fastest person to sail solo around the world without stopping, in 57 days, 13 hours, 34 minutes, and 6 seconds.

Ocean races can be extremely challenging and dangerous. They require both
physical and mental strength, as sailors can be at sea for many weeks at a time.

KEY

- Route du Rhum
- Volvo Ocean Race
- Velux 5 Oceans

South Atlantic Race

Fishing

Rain or shine, anglers spend hours waiting for a fish to take their bait. Some eat their catch, but many throw the fish back. So what is the big attraction? Anglers enjoy the peace and quiet, pitting their wits against the fish, and having their skill rewarded.

WHERE TO FISH

There are three main
types of fishing: freshwater fishing (sometimes called coarse fishing), saltwater fishing, and fly-fishing. In freshwater and saltwater fishing, anglers use baits and lures to attract fish. In fly-fishing, they use imitation flies instead. Freshwater environments include ponds, lakes, streams, and rivers. Fly-fishing can happen in fresh or salt water.

STILL WATER Ponds and lakes are home to carp, pike, to carp. pike,
and other freshwater species. Anglers fish from the bank or a boat

RUNNING WATER Streams and rivers are the place to catch salmon, trout, bream, and perch. Anglers fish from the bank or wade in

SALT WATER Most saltwater fishing is from boats close to shore or out at sea. Anglers also sit on sea walls, or wade in the shallows.

RODS, REELS, AND LINES

A simple stick or length of bamboo can work as a rod, with a line and hook tied on - but most anglers have high-tech rods made of fibreglass or carbon fibre. They come apart for easy carrying and are used with a reel to wind in and stow the line. Multiplier reels allow faster winding than fixed spools, as each turn of the handle spins the drum several times. Super-fast fly reels are used for fly-fishing.

MULTIPLIER REEL

FLY REEL

FLOAT ROD (IN FOUR PIECES)

FISHING TACKLE

A tackle box with a handle is essential for transporting equipment and keeping it all
organized. The best designs open out so that the compartments are tiered. attention in an emergency

Float rig with hook

Catapult for launching bait into the water

BAIT

Even everyday scraps of bread will attract fish, but there are better baits to use. Live types include worms and maggots. Sweetcorn, seeds, grains, and dog biscuits work well, too. Boilies are processed bait balls, high in protein, that come in many colours and flavours.

WAX WORMS

WEIGHTS

Weights help bring the end of the line close to the fish Anglers use them to anchor the bait on the bottom or keep it at a particular depth. Most weights are made of a soft metal called lead. Different shapes do different jobs. The smallest - split shot - slots, or crimps, on to the line under a float to position it in the flow of water. The combination of the line, hook, bait, and weight is called a rig.

LEAD WEIGHTS

HAIR RIG FOR CARP
Carp are wary fish. The bait is attached to the hook on a fine, weighted line. The fish sucks up the bait without feeling the hook.

CATFISH RIG
Catfish can be huge. Live bait is fixed to the hook. The baited rig is tied to a float that is secured by a weight on the riverbed.

WIRE

CASTING
Few people get the hang of casting straight away, but practice makes perfect. Sending the fly, lure, or bait to where the fish are take good hand-eye co-ordination and strength.

BIGGEST CATCH

Big-game fishing happens out in the open ocean. Tuna, marlin, and swordfish are popular targets, and the aim is to catch the biggest fish possible. The record for the heaviest Atlantic bluefin tuna was set in 1932 by English fisherman Edward Peel, using a rod and line.

WEIGHING

All anglers want to know how much their catch weighs - so they can compete with each other, and with their own personal bests. For catch-and-release fishing, it is especially important to use scales that do not cause any extra distress.

LURES

Made of plastic, metal, or wood, lures are shaped and coloured to look like irresistible little fish. Like a puppeteer, the angler works the line so the lures come to

LURES ARE SOMETIMES DELIBERATELY DESIGNED TO LOOK DISTRESSED OR INJURED - LIKE EASY PREY
DEPTHS
Lures can be
weighted to
swim" at
different depths,
so that they

PIKE LURE Pike will go for a lure at any depth. The lure has to be on a wire line as
a pike has a pike has
fierce bite.

FLOATS

Like weights, floats help suspend bait or a lure at a particular depth in the water. Some come ready-weighted, but others are used with lead weights or shot. Lighter floats are ideal for still water. Fast-moving water needs heavier floats.

UNUSUAL FISHING METHODS

People have caught fish throughout history, gathering food from rivers and the sea just as they hunted animals on land. Over the centuries, people came up with many weird and wonderful ways to catch fish

O ON STILTS

Stilt fishermen in Sri Lanka drive their poles into the sand just offshore, then perch at the top and cast their lines. This the fish as little as possible.

Fishermen along the coast of Portugal traditionally used water dogs to herd fish into their nets.
portuguese WATER DOG

O USING CORMORANTS

Chinese and Japanese fishermen use trained cormorants. A throat snare stops the birds swallow to let them eat smaller ones.

O WITH DOLPHINS

A pod of dolphins in Laguna,
Brazil helps the local fishermen CORMORANTS by driving shoals of mullet towards the shore. The dolphins
.out of the water to tell the people the right moment to cast their nets.

FLY-FISHING

Fly-fishing began as a way of catching river salmon and trout. Today, it is popular for a huge range of fresh- and saltwater species. The angler uses fake flies to tempt the fish. Some are cast on to the surface of the water (dry flies), and some into the water (wet flies) Flies can be lifelike (deceivers) or come in crazy colours (attractors).

ADULT MAYFLY
(freshwater)

WRIST ACTION
In streams or rivers, the fly-angler aims to cast the fly upstream. Then it will gently drift downstream
in a natural-looking way.

DAMSEL NYMPH
(freshwater)

CARP FLY
(freshwater)
Mimics dog-biscuit bait.

DEPTH CHARGE CZECH MATES (freshwater) Mimics a caddis fly larva.

ATTRACTORS

Attractors are often brightly coloured. The fly-angler usually moves them around a lot to tempt fish to attack.
 PIWI POPPER (saltwater)

Legs make ripples

CHERNOBYL ANT
(freshwater)

DEER HOPPER (freshwater)

Rubber legs
create movement
-

Combat sports

Many sports, both ancient and modern, have their roots in traditional fighting techniques. These combat sports teach strength and discipline, and help students learn how to defend themselves. Some are better known as martial arts.

TYPES OF COMBAT SPORTS

Some combat sports have developed from very old ways of fighting, while others have been around for just a few decades. Most focus on one of three types of attack: punches, kicks, and other strikes; throwing, holding, and pinning; or using weapons.

PUNCHES, KICKS, AND OTHER STRIKES

KUNG FU: TAOLU
Kung fu takes many forms The most popular is taolu, a form of wushu.

KUNG FU: SANSHOU

Sanshou is a Chinese martial art similar to kickboxing. It is never practised with weapons.

KUNG FU: T'AI CHI
Based on slow, flowing
movements, this is a gentle,
meditative form of kung fu.

BOXING

The Ancient Greeks boxed, but modern boxing follows rules set 150 years ago in England.
THAI BOXING
Unlike Western boxers, Thai
boxers attack with feet, elbows,
and knees as well as fists.
CAPOEIRA
African slaves in Brazil developed
capoeira. It looks like a dance, but
it is really a form of self-defence.
TAEKWONDO
The name of this 20th-century
Korean martial art means "the
way of the foot and fist".
KARATE
Originating from Japan, karate is a
form of self-defence. Practitioners
do not use any weapons or props.

THROWING, HOLDING, AND PINNING

KUNG FU: TAOLU

Taolu is a form of kung fu in which competitors show off routines on a padded mat. Their moves include punches, balances, jumps, sweeps, and throws. Some moves are performed bare-handed, and some with weapons.

TAOLU WEAPONS

In taolu, competitors handle various traditional Chinese weapons. Working alone or in pairs, they aim to be as graceful as possible.

GUN (TYPE OF STAFF), $210 \mathrm{~cm}(7 \mathrm{ft})$

$\xrightarrow{4}$

JIAN (SWORD), $103 \mathrm{~cm}(3.4 \mathrm{ft})$
DAO (CURVED SWORD),
$98 \mathrm{~cm}(3.25 \mathrm{ft})$

$\mathrm{O}=\int^{-}$
 NANDAO (BROADSWORD)

SEATED STANCE In this stance, called xie bu, the competitor wraps one thigh stays flat on the floor.

CROUCH STANCE This move, known as pu bu, a very low squat. One arm counterbalance the crouching.

BOXING

In boxing, two opponents try to punch each other, while avoiding punches themselves. They score points for different punches to their opponent's head and upper body. The winner is the boxer who scores most points or who knocks out his or her opponent.

FIGHTING GEAR
Groin guards are
optional, but gloves optional, but gloves and mouth guards must be worn. Head guards are mandatory for women's contests.

GROIN GUARD

A stiff jab is the used by all bexers. punch perfect jab, the boxer a to fully extend his arm.

Hooks are delivered to the side of the head or body. The best hooks are those an opponent does not see coming

UPPERCUT This powerful punch is
delivered on to the opponent's chin from below. It often

JUDO

In the Japanese art of judo, two opponents (called judoka) try to throw each other to the ground, pin each other down, or force a submission. There are no weapons, and kicks and punches are not allowed.

SUMO
In sumo wrestling, the aim is to stay in the ring with only the feet touching the ground. The two opponents try to push each other off balance or out of the ring. The heaviest sumo star, Konishiki Yasokichi, weighed $287 \mathrm{~kg}(633 \mathrm{lb})$ and was known as the "Dump Truck

TSURIYANE CANOPY
The canopy over the fighting arena looks like the roof of a Shinto shrine.

FENCING

Two opponents face each other with special swords in this traditional sport. Matches take place on a narrow, raised platform, and the fencers score points by touching target areas on their opponent's torso.

In a competition, the first judoka called to fight wears a blue judo suit, and his or her opponent wears white. Judges, referees timers, and scorers work together to award scores.

0-GOSHI In the o-goshi, or hip throw, the judoka uses his or her hip as a pivot point to throw

KESA GATAME
Many throws end with pin. Kesa gatame involves wrapping an arm around the opponent's neck.

OKURI-ERI-JIME Submissions are dangerous moves. In okuri-eri-jime, the judoka grips his or her judoka grips his or her
opponent in a stranglehold

YORIKIRI
This move involves seizing the opponent's mawashi and trying to march him out of the ring.

-
In this attack the grips his opponent's mawashi and pulls him down, while and pulls him down, while
turning his own upper body.

ATTACK
The fencer extends his or her sword arm towards the opponent. A lunge forward adds force to the attack.

PARRY
The parry is a defensive move that blocks the opponent's attack and may expose him attack and may expose him

HATAKIKOMI
As one wrestler charges, the As one wrestler charges, the
other steps to the side and other steps to the side and
then slaps the opponent's back or arm so he falls over

RIPOSTE
After a parry, the follow-up counterattack is known as a riposte. The name comes from riposte. The name comes from".

Knots

Knowing how to tie knots is a fun skill that is useful in many situations. For activities such as climbing or sailing, ropes tied with the right knots are vital for safety. More everyday uses for knots range from putting up a tent to making decorations or even tying shoelaces.

FIGURE OF EIGHT
Easy to tie and untie, the figure of eight is a simple stopper knot that can be used to stop rope from slipping through a hole. It is an important knot for sailors and rock climbers.

1

2

4
3

REEF KNOT

This binding knot is quick to do. It is used for securing rope or string around an object, so is perfect for tying up parcels. Reef knots are also known as square knots.

3
4
5

STOPPER KNOTS
These prevent a rope slipping through a hole or unravelling at the end. Stopper knots can also be used for decoration. Some are tricky to undo.

MANROPE

MONKEY'S FIST

FIGURE OF EIGHT
BINDING KNOTS
Handy for many purposes, binding knots are particularly useful for tying things together in bundles. Some types are ideal for making bows on gift packages or tying shoelaces.

CLOVE HITCH

BEND KNOTS
These knots are designed to join two pieces of rope together. They are used by mountaineers on safety lines and other pieces of climbing equipment. Some bend knots secure fastenings between ropes of different thicknesses.

Games

Long before the Internet, computer games, and TV, people invented games. Board and card games have been around for hundreds or even thousands of years and are as challenging and fun to play today as they ever were.

CARD GAMES

Easy to carry and used all over the world, packs of cards are the starting point for thousands of different games. Digital versions of many traditional games can also be played online.

CARDS FROM AROUND THE WORLD European packs have 52 card
in four suits - hearts, clubs, diamonds, and spades. Other

CHINESE CHEQUERS
The aim of this game is to race your coloured pegs across the board to the opposite point of the star. You can move along one board to the opposite point of the star. You ca.
hole at a time or hop over pegs in your path.

TABLE-TOP GAMES

These competitive games have flat
boards, small pieces, and can take hours of concentration before someone wins. Over the years, games like these became a focus for social get-togethers. They are still a great way to gather people round a table to have fun.

BACKGAMMON This game for two players is one of the oldest in the world. It involves a mixture of strategy and luck as players roll dice and then decide how to move their
counters. The winner is the first player to clear their pieces off the board.

SNAKES AND LADDERS Players throw a die to
move up the board and hopefully, land on a ladder to skip rows. But watch out for the snakes!

GO GAME Go starts with an empty board. Players place their stones where the lines cross to build territories. Or they surround and capture enemy stones.

DRAUGHTS
The aim of this game is to grab all your opponent's pieces by jumping over them diagonally as you cross the board

Solitaire
The aim of this game for one person is to clear the board by jumping marbles over each othe to remove them. The game is complete when just one marble is left in the centre hole.

POPULAR CARD GAMES

In most games, winning is a mix of memory,

Skill, and luck in how the cards fall.			
NAME	TYPE	PLAYERS	OBJECTIVE
Rummy	draw-and-discard	2 or more	combine cards into sets
Bridge	trick-taking	4 players	highest score
Poker	trick-taking	2 or more	hand rankings
Patience	building sets	1 player	complete all 4 sets
Canasta	draw-and-discard	4 players	highest score

A GAME OF CHESS

In a chess game, each player has a black or white army and takes turns to move pieces to attack the other player's king. The aim is to put cannot move to safety. Along the way players capture enemy pieces and try to keep their own pieces safe

CHESS BOARD SET-UP
The 16 pieces sit on black and white squares in two rows with the eight pawns in the front row. In the back row, two bishops, two knights, and tw

White queen \mid King \quad Bishop \quad Knight $\left.\right|_{\text {Rook }}$
sits on white
square

CHESS PIECES

There are 32 pieces in a set 16 black and 16 white. Each
player has one king, one quee two rooks, two knights, two bishops, and eight pawns. 1
 *
 1

KNIGHT
The knight is useful over pieces in its path. It moves two squares in any direction and then sideways one square to the left or right. In effect, it sits in the squares by two and jumps to the opposite corner.

QUEEN
The queen is the most
powerful piece on the
board. She can move in
any direction and for any
number of squares as long
as her path is clear of her
own pieces. If she captures
an opponetst's piece her
move is over.
Rook or cASTLE
Sitting in the corner of
the board tat the beginning
of the game, the rook lor
castlel can move backwards,
forwards, left, and right as
far as is ineeds to. Its path
has to be clear of pieces of
the same colour. The rooks
are often used to protect
each other.

GAMES THROUGH THE AGES
Archaeologists have found ancient game pieces that are more than 5,000 years old. Prehistoric people played games even earlier, with bones that were used like dice.

The Scandinavian
trategy game Hnefataft is Norse Saga.
(1)

Cribbage board
1600s $=$
A card game called cribbage, played with a scorekeeping board, is invented.
$1886=$
The first World
hess Tournament
is held.

1890s $=$ Snakes and
adders, based on Ladders, based on an ancient Indian
game, becomes popular in Victorian

England.
1970 -
A code-breaking
game for two
players called
Mastermind is
invented.

-1492

A knight and lady
are shown playing
draughts in a
medieval book

- c. 1850

The Chinese game
mahjong is created
-1874
1874
Parcheesi, a
version of the
ancient Indian
game pachisi,
to the USA.

-1938

1938
Criss Cross Words (late
Scrabble) is invented by
a US architect

- 1978

Space Invaders
becomes a blockbuster
arcade video game
1980
Arcade game
Pac-Man is
$1984=$
The Trivial
general knowledge
huge success.
$2004=$
World of Warcraft
is created - a
MMORPG
Imassively
multiplayer online
role-playing game).

1980

1980
Rubik's Cube
Rubik's Cub
is launched
and becomes
the world's puzzle game

-2000
omputer gamers can set
up home and choose how
follow-on from SimCity.

2011
The multi-award-winning
computer game Minecraft
is released.

The bishop is topped by
a mitre (bishop's heada mitre (bishop's headdress). It can move any distance diagonally as long as its path is clear. The bishop starts on a light or dark square and mus stay on the same colour throughout the game.

PAWN

Pawns are the smallest and least valuable pieces Throughout the game, a pawn can move just one square at a time forwards from its starting position. But for its very first move, the pawn has the option of moving two squares forward
ULL SET OF BLACK PIECES

Magic

Magicians perform tricks and illusions to amaze an audience by making the impossible seem possible and the unbelievable believable. With practice and a little skill, anyone can learn a few magic tricks to impress friends and family. The golden rule of magic is never to reveal how your trick works.

draw a circle Place the plastic cup upside down on one of the pieces of paper or card and pencil. Cut out the circle.

HIDE THE COIN Completely cover the cup with the handkerchief and place it over the coin. You

TOOLS ARE READY AND IN PLACE BEFORE STARTING ANY MAGIC TRICK

WATER TO ICE

This is a simple transformation trick. You will need a paper cup, ice, sponge, scissors, and a small jug of water. Practise first so you know how much water your piece of sponge will absorb

ADD the sponge Cut a piece of sponge to fit snagly inside your paper cup. This will absorb the water you pour in.

PLACE THE OBJECTS Place the cup upside down on the second piece of paper or card. Put the handkerch
there too

No COIN!
If you are careful, your audience won't guess that the coin is actually underneath the paper circle.

MAGIC EFFECTS

There are thousands of
different magic tricks and magicians are always thinking up new ones. All magicians perform their magic using effects. The simplest tricks rely on just one effect, but more complicated tricks use several effects at once

LEVITATION OR SUSPENSION Making something or someone appear to fly or float in midair.

PRODUCTION Making something - or som of nowhere

prediction Seeming to know what is about to happen, such as

Escaping from restraints such as handcuffs, or
traps such as cages.

VANISHING The opposite of production making a thing or person disappear.

TRANSFORMATION Changing one thing into a person into an animal.

TELEPORTATION
Moving something from one place to another without seeming to handle it.

MAGIC SKILLS

Entertaining the audience is a magician's first task. Once the audience is under his or her spell, the magician uses sleight of hand - distraction and deception - to make it appear that real magic is being performed

SHOWMANSHIP
A good magician amuses and entertains the audience Props such as scarves come in useful, and so does "patter" - telling jokes or asking questions.

SLEIGHT OF HAND
The magician takes advantage of "blind spots" in the audience's vision and uses fast, fluid hand movements to hide or disguise an action

MAGICIANS

The first stars of stage magic invented their own amazing tricks. Today's top magicians continue this tradition devising different illusions to delight and enthral audiences

THE GREAT LAFAYETTE (1871-1911)
Lafayette was probably the most successful magician of his time. His speciality was dramatic illusions, often performed with his dog HARRY HOUDINI (1874-1926)
The greatest escapologist the world has ever known, Houdini could free himself from cages, straitjackets, prison cells

O DANTE THE GREAT (1883-1955)

Dante's amazing shows of tricks and illusions Dante s amazing shows of tricks and iltusions
included a huge cast of musicians, jugglers, acrobats, birds, and animals.

CRISS ANGEL (1967-)

Magician of the Century" Criss Angel's stunts include walking on water, floating between two buildings, making an elephant disappear, and being run over by a steamroller while lying on DAVID BLAINE (1973-)
Blaine performs amazing feats of endurance
such as being encased in ice, buried alive, or surrounded by deadly electric currents.

RAISING
 ACES

This teleportation trick makes it look as though you can conjure up the aces from a pack of cards Carry out the first step in secret, then ask for a volunteer.

face down.

$3 \begin{aligned} & \text { TOP THREE CARDS } \\ & \text { Ask the volunteer to }\end{aligned}$ choose one of the three piles that don't contain the aces. Get him or her to take the top three cards and move them oo the bottom of the pile.

DEAL ONE CARD have your volunteer deal one card from their pile on to Then repeat this for the other piles without aces, and finally for the pile with aces.

5 REVEAL THE ACES the top card of each pile to reveal the four aces.

HEAT IS ON

This coin trick uses the effect of prediction to make your audience believe you
have hidden mind reading powe
You will need a bag of cool coins - put the coins in the fridge for a few minutes before you start.

GATHER THE AUDIENCE Ask an audience member pick a coin from the bag, hold it tightly and think hard about its appearance.

THE MAGIC

 STRINGThis trick uses the effect of restoration to appear to make a cut piece of string whole again. You will need a short length and a longer length of string and scissors.

MIX THEM UP
2 Ask your volunteer to put the coin back in the bag, then tip out all the coins.

4 HIDE IT
Secretly tuck the cut pieces into the palm of your hand and p
the long string.

SHOW THE COIN
The coin that is warm to the ouch is the one your volunteer picked up, of course!

Horse riding

There are many ways to enjoy riding a horse, from playing team games and jumping over obstacles to going for a quiet canter in the countryside. Learning how to look after and handle a horse safely and correctly is part of becoming a good rider.

TACK

The equipment worn by a horse is known as tack. The bridle, which has a mouthpiece called a bit, allows the rider to control the horse's head. The saddle spreads the rider's weight evenly across the horse's back. There are many different styles of tack for different purposes.

PUTTING ON A SADDLE

It is important to know how to put on a saddle correctly. A badly positioned saddle can hurt a horse's back and be unsafe for the rider. Both before and after mounting, the rider should check that the girth lthe strap that goes under the horse's belly) is tight enough.

BRIDLE

RIDING GEAR

A safety hat or helmet is the most important part of a rider's clothing. Boots should have a low heel to stop the feet from slipping through the stirrups. Chaps (leggings) worn over riding trousers or jodhpurs protect the lower legs.

PROTECTIVE HAT

GLOVES

HALF CHAPS

JODHPUR BOOTS

WESTERN BRIDLE

chain PELHAM BIT

JOINTED EGGBUTT
SNAFFLE BIT

KIMBLEWICK BIT

MOUNTING

For a new rider, the first challenge is getting into the saddle Learning how to mount a horse quickly and safely takes lots of practice. The rider should always begin from the left-hand or "near" side of the horse

DISMOUNTING

Getting off a horse feels easier than getting on. However, for
safety and the horse's comfort, the correct technique must be
used. The rider dismounts on the near side and should never
attempt to jump off while the horse is moving.

FEET OUT
Holding the front of the
saddle, take both feet out of
the stirrups and lean forwards.

FOUR PACES

Horses have four main natural paces, or ways of moving
at different speeds. These are walk, trot, canter, and
gallop. At each pace, the horse's feet touch the ground
in a repeated sequence of steps.

WALK: AVERAGE SPEED $5-6.5 \mathrm{KM} / \mathrm{H}(3-4 \mathrm{MPH})$

TROT: AVERAGE SPEED $13-16 \mathrm{KM} / \mathrm{H}$ ($8-10 \mathrm{MPH}$)

CANTER: AVERAGE SPEED $16-27 \mathrm{KM} / \mathrm{H}(10-17 \mathrm{MPH})$

GALLOP: AVERAGE SPEED $40-48 \mathrm{KM} / \mathrm{H}(25-30 \mathrm{MPH})$

HORSE SPORTS

Games and sports with horses are popular worldwide. They include racing, team games, and competitions between individual riders, such as jumping and cross-country events

EVENTING
Sport combining dressage, cross country riding, and showjumping.
 Team game in which riders strike a ball with mallets.

HARNESS RACE
Racing with two-wheeled
carts called sulkies

STEEPLECHASE
Race over obstacles such
ase over obstacles suct

horseball
Team game in which riders
shoot a ball into a net.

DRESSAG Competition to show how well a horse moves

RODEO
Contest based on
traditional cowboy skills.
－今后后

History

The first humans

Millions of years ago, a group of apes began to walk upright. They were our ancestors, the first human-like animals on the planet. Over time, their bodies adapted to walking upright and their brains grew larger, until finally they evolved into our species, Homo sapiens.

LATE ARRIVALS

Our planet was formed jus
over 4.5 billion years ago If the whole of Earth's history were squeezed into an hour, most life forms would not develop until the last ten minutes. Humans would not appear until the very last fraction of the last second of the hour.

OUT OF AFRICA

Homo sapiens, our species, first evolved in Africa around 150,000 years ago. About 100,000 years later, they began to move away to make new settlements, until humans were living on all the world's continents, except Antarctica.

FEET
A gorilla's big toe is on the side of the foot, to help it climb trees. Human feet have aligning toes and longer heels, to support weight evenly while we walk.

ON TWO FEET

Humans walk on two legs, unlike other primates (apes), who are either climbers or walk using all four feet. As a result of walking upright, humans' bodies have developed very differently from those of their ape relatives.

NECK
The human neck sits directly under the skull so the head balances at the top of the spine. A gorilla's neck meets the head from the side.

SPINE
The human spine has developed extra curves at the neck and lower back, so it can absorb the impact better when the person walks or runs.

 2.2 MYA
Homo habilis
Called habilis (Latin
for "handy Called habilis (Latın because they may 600,000 YA
Homo
heidelbergensis
Higher, broader
skull to protect a
larger brain than
earlier species.
have been the first
species to use tools. species to use tool

EARLY TOOLS
Early humans learned how to make tools by striking a stone with another one to make a cutting edge. Humans began to make different tools for different tasks, such as digging, sawing, or opening nuts

HOW TO MAKE A HANDAXE It took skill and experience to select a suitable stone, then chip it to make a sharp, usable tool.

1 S

8 MYA

HUMAN ANCESTORS

About 7 million years ago, the ape family split into two branches - one would lead to chimpanzees, and the other was the line of human-like apes (hominins) that would eventually evolve into modern humans.

3.3 MYA

 Australopithecus africanus africanusApe-like, with a Ape-like, with a
small brain but small brain but

7 MYA (million years ago) Sahelanthropus tchadensis ancestor of both chimps and humans.
6.1 MYA

Orrorin tugenensis
Possibly the first ape
to walk on two legs.

PRESENT
1 MYA
Homo erectus
As tall as moder humans, with a similar build.

350,000 YA

 Homo neanderthalensis Excellent hunters and tool-makers who thrived in th of Europe.

HUNTER-GATHERERS

Early humans had to find food either by hunting animals, or by gathering wild plants. They developed tools to help them, from diggers for rooting out edible plants from the soil to harpoons for spearing fish.

ANCIENT MONUMENTS

Many prehistoric sites still exist around
the world. It is difficult to know exactly what some sites were used for, as they were built long before humans started keeping written records.

O STONEHENGE, ENGLAND

A ring of gigantic stones, built about 5,000 years ago, as part of an ancient burial ground, or as a place of worship.

CARNAC, FRANCE

A small area of three fields, containing more than 3,000 granite megaliths (standing stones) arranged in rows.

O GGANTIJA TEMPLES, MALTA
Two remarkably well preserved structures, built from limestone during the Neolithic Age (c. 3600-3200 все).

GOBEKLI TEPE, TURKEY

The world s oldest known temple, built about 11,000 years ago near the ancient city of Sanlurfa.

NEWGRANGE, IRELAND
A Neolithic burial site featuring a huge, circular mound containing a tomb and surrounded by 97 highly decorated stones.

STONE CIRCLE AT STONEHENGE
STONE CIRCLE AT STONEHENGE

FIRST FARMERS

Gradually, humans learned
that instead of moving
around, constantly looking for food, they could stay in one place and become farmers, growing crops and raising animals to eat. Farming changed forever the way humans lived.

ART

Early humans created the world's first art. They used paint made from coloured minerals in rocks to draw animals on the walls of their caves. They also carved animals or human figures out of rocks and bones

CAVE PAINTING, FRANCE

 FIGURE, GREECE

BETWEEN TWO RIVERS

The region of Mesopotamia lay in the fertile flood plain between the rivers Tigris and Euphrates. The name Mesopotamia means between two rivers" in Greek

\square

SUMER

Sumer was not a single country but a with each other for control of the region.

GREAT CITIES

As the Sumerian settlements grew, they formed cities, some of which became large and powerful city-states. Each city-state had its own leader, who ruled on behalf of the city's god.

O URUK
Uruk was one of the first major cities in the world. Its most famous king was Gilgamesh, Who was also the hero of one of the world's first known poems, The Epic of Gilgamesh.

AKKAD

This city was the centre of the world's first empire. In 2330 bcE, the Akkadians conquered many of their neighbouring city-states and took control of Mesopotamia

O BABYLON

The capital of the Babylonian Empire. At its peak around 550 BCE , the city's population was about 200,000.

O NIMRUD

For a time, the capital of the Assyrian Empire. The magnificent palace of King Shalmaneser II The magnificent palace of King Shalmaneser
covered over $50,000 \mathrm{sq} \mathrm{m}(538,196 \mathrm{sq} \mathrm{ft})$ and covered over $50,000 \mathrm{sq} \mathrm{m}$ had more than 200 rooms.

O

Site of a huge ziggurat (pyramid-shaped temple) and the Royal Tombs, which contained some of the finest Mesopotamian ar ever discovered
THE SUMERIANS CREATED THE FIRST CALENDAR BY DIVIDING

BABYLON'S WONDERS

In 580 bce King Nebuchadnezzar of Babylon built a number of huge buildings in his capital, turning Babylon into the most magnificent city in the ancient world.

HE YEAR INTO 12, BASED ON
THE MOON'S MOVEMENTS

Early civilizations

The world's earliest civilization emerged more than 6,000 years ago in an area of Mesopotamia (modern-day Iraq) called Sumer. For the first time, people lived and worked together in cities, governed by a king who made laws that everyone had to follow.

FROM HUNTING TO FARMING

When roaming hunter gatherers started planting crops, they began to settle in one place and made farming tools instead of hunting weapons. Villages, towns, and eventually cities were established

$\mathbf{2 3 3 4}$ все		
King Sargon of Akkad conquers Sumer, creating the world's first empire.	Figure of Sumerian priest	

- 539 все
- 7000 bсе People start to grow crops on a large scale
in Mesopotamia.

3300 bce invent a for
of writing.

3000 все pharaohs into a single state.

ISHTAR GATE

$$
\begin{aligned}
& \text { Gigantic main entrance } \\
& \text { to the city, desianed to }
\end{aligned}
$$

$$
\begin{aligned}
& \text { to the city, designed to } \\
& \text { inspire awe in visitors. }
\end{aligned}
$$ inspire awe in visitors.

ETEMENANKI ZIGGURAT Temple of Marduk, patron god of Babylon. Rebuilt after it was destroyed in about 689 BCE.

HANGING GARDENS Majestic terraced garden, one of the garden, one of the the Ancient World

7000 BCE

CRADLE OF CIVILIZATION

The plain between the two great rivers of Mesopotamia was very fertile, with rich soil a warm climate, reliable rainfall, and a wide range of plants and animals. It was the perfect place for early humans to put away their hunting spears and settle down in farming communities instead.

4000 bce

 The Sumerians build several cities in Mesopotamia.| - 3200 bсе | -2800 bсе | - 2600 bсе |
| :---: | :---: | :---: |
| Greece: | Peru: | Northwes |
| earliest | earliest | India: Indus |
| civilizations | civilization | ivilization |
| appear. | in the | reaches |
| | Americas | ts peak |

CODE OF LAW
King Hammurabi of Babylon laid down a set of strict rules that is one of the oldest recorded codes of law in the world.

NO RUNAWAYS If you helped a slave to run away, you would be put to death.

HANDS OFF! If a son hit his
father, his hands would be chopped off.

DAILY LIFE

Cups, bowls, and vases for everyday use were made of clay, but richer homes used vessels made of stone or metal. Silver was imported from nearby Anatolia to

INVENTION OF

 THE WHEELNobody knows exactly when the wheel was invented, but they were in use in Sumer by 3500 bce. Sumerians used the wheel vertically on their chariots, and horizontally to make clay pots

RECONSTRUCTION OF
an EARLY WHEEL
 make luxury tableware.

Be BULL'S HEAD

SOAPSTONE TUMBLER

STONE POT

CYLINDER SEAL (LEFT) WITH IMPRESSION (RIGHT) OF GODS FIGHTING LIONS

GODS AND

RELIGION

The Sumerians worshipped many gods, but the most important were the guardians of each city-state. Gods were worshipped in huge temples called ziggurats, which dominated the flat landscape for miles.

UTU
God of the Sun and of justice.

EARLY WRITING

The first known form of writing comes from Sumer. The first symbols were recognizable pictures of objects
(pictograms), but these developed into a system of simpler wedge shapes, called cuneiform

WAR AND WARRIORS

The different city-states of Mesopotamia competed with one another for land and vital resources, such as water, and this often led to fighting and war. Warring cities began to organize trained groups of men to fight - the world's first armies. Soldiers wore bronze or leather helmets, and carried large shields and bronze spears or bows and arrows.

WEALTH AND POWER

Much of the Mesopotamian art and crafts that survives today was found in a royal cemetery in the city of Ur. These treasures tell us about the skill and artistry of the craftsmen who made them, as well as the wealth of the people buried with their valuable possessions.

QUEEN PUABI'S FINERY

FAMOUS PHARAOHS

The kings and queens of Ancient Egypt did not call themselves pharaohs, but that is the name we use today. They wielded an enormous amount of power. They made every law, held the title of highest priest in the land, and were worshipped as though they were gods.

KHUFU
Reigned c.2589-2566 BCE Builder of the Great

KHAFRA Reigned c.2558-2532 bce Khufu's son. His face may be the model for the Sphinx.

HATSHEPSUT Reigned c.1473-1458 BCE One of only a few female pharaohs.

TUTHMOSIS III Reigned c.1479-1425 все Great military leader who never lost a battle.

AMENHOTEP III
AMENHOTEP III igned c.1390-1353
Helped to make Helped to make
Egypt prosperous.

AKHENATEN
AKHENATEN
Reigned c.1353-1336 BCE
Rejected traditional
Egyptian gods.

RAMESES II RAMESES II Ordered many huge Ordered many huge
building projects.

Ancient Egypt

More than 5,000 years ago, two regions of the Nile river valley - Upper and Lower Egypt - were united under a common ruler. This was the birth of the empire of pharaohs and pyramids, one of the greatest powers of the ancient world.

CLEOPATRA VII CLEOPATRA VII Reigned 51-30 BCE
ast pharaoh. Killed herse Last pharaoh. Killed herse
after defeat by Rome

PYRAMIDS

When an Egyptian ruler died the body was buried inside a massive pyramid. Taking up to 30 years to build, pyramids went through various changes of design over the centuries. People who were not royal were buried in simpler tombs

STEPPED PYRAMID An early model, built in layers.

ROWING BOAT Wooden boats were used for transport and fishing. flooding left deposits of rich soil that was excellent for farming grain crops.

THE RIVER NLIE

Living along both banks of the Nile, the Egyptians occupied a rare fertile strip of land amid vast areas of desert. Their lives depended on the river. Regular

Furled sail
Rudder for Rudar
steering

MUMMY-MAKING

The Ancient Egyptians believed that a dead person's soul needed its body in the afterlife. Mummifying - which only the rich could afford - was an elaborate way of preserving a body to stop it crumbling away.
 Airshaft

"BENT" PYRAMID Midway between
stepped and smooth.

SMOOTH-SIDED PYRAMID
The classic structure, cased

protecting

Protective amulets, like this symbolic pillar, were placed with the body.

WRAPPING
Strips of fine linen were wrapped around the entire body and coated with resin.

BURIAL
BURIAL shaped case and then an outer coffin, both decorated with pictures and symbols.

GODS AND GODDESSES

There were many gods and goddesses for an Ancient Egyptian to worship. This "family tree" shows how some of the major gods descended from Atum, who the Egyptians believed created everything.

HIEROGLYPHS

Ancient Egyptian writing used pictures or signs called hieroglyphs. Each one could mean a sound, a word, or an action. The "alphabet" seen here shows some hieroglyphs and how they might be pronounced today. Instead of writing on paper, the Egyptians used flattened sheets of a type of reed called papyrus.

	a	\sum_{b}	kh	8	tj	d	位
Δ	h	kh				ancos n	$\underbrace{6}_{05}$
			\square sh				-000 s

JEWELLERY

The Ancient Egyptians prized jewellery. Rings, necklaces, and amulets in the form of sacred symbols were popular. Jewellery worn by rich people was often made of gold and valuable stones.

EARLY DYNASTIC $=$ PERIOD c. $3000-2686$ BCE
Organized government under the rule of the pharaohs begins. People start to use hieroglyphs.

OLD KINGDOM * OLD KINGDOM The great pyramids and the Sphinx are built at Giza.

1ST INTERMEDIATE
PERIOD
2160-2055 BCE Many power struggles between dynasties.

MIDDLE KINGDOM *
2055-1650 BCE Life is more settled. Improved irrigation produces better crops.

2ND INTERMEDIATE *
PERIOD
1650-1550 BCE
More unrest, with
wars and invasions.
NEW KINGDOM * Egypt conquers many lands. Famous pharaohs include Tutankhamun.

3RD INTERMEDIATE PERIOD 1069-664 BCE conquer Egypt.

LATE PERIOD *-664-332 BCE Time of much temple building and PTOLEMAIC DYNASTY 332-30 bCE Cleopatra VII, the last pharaoh, dies. Rome conquers Egypt.

HISTORY OF
ANCIENT EGYPT
The Ancient Egyptian civilization lasted for more than 3,000 years, with hundreds of different rulers, both good and bad. Historians have divided up this very long timespan into major dynasties (ruling families), kingdoms, and periods

The Sphinx at Giza

Slab for mixing ointment made around 2000 BCE

Bronze statue, which may have held a cat mummy

 Underworld
_ Spread wings were a common decoration

Traditional sacred symbols
of cross and pillar

TIMELINE

The Ancient Greek civilization existed for 2,500 years. The Greeks built huge city-states, formed new colonies, and fought many battles before they were finally conquered by the Romans.

- 2200-1450 BCE palace culture in Crete.

Model of a Minoan house

1450 BCE Mycenaeans invade Crete and occupy the Minoan palaces They also build their own palace settlements in the Peloponnese region

1350 BCE At the peak of the Mycenaean period, the city of Mycenae has a population of around 30,000.

MINOAN PERIOD

Minoan civilization flourishes in Crete. The Minoans are clever traders and build large palace complexes, but these are destroyed by invaders.

MYCENAEAN PERIOD
1600-1200 BCE
The Mycenaeans build fortified palaces. Armed with bronze weapons, they expand into Crete, but their cities fall
to new invaders from the north.
reek soldiers hid in a wooden horse to defeat the Trojans

1184 BCE
According to Homer, Greece defeats Troy in a war that has lasted more than ten years.

2500 BCE

DARK AGES
 DARK AGES

The Mycenaean culture collapses around 1200 BCE, and Greece enters a dark age. Settlements become smaller and there are no written records.

Ancient Greece

The Greeks were one of the most advanced civilizations in the ancient world, inventing politics, philosophy, theatre, athletics, and the study of history. Their stories and plays still exist today, along with the remains of beautiful temples and buildings.

CITY-STATES

For most of its history, Ancient Greece was divided into citystates. Each city ruled the villages and farmlands around it with their own system of government and chose one god as a special protector.

WARRING STATES
The city-states of Athens and Sparta were bitter rivals and fought several wars against each other.

THE CITY-STATE OF ATHENS WAS 20 TIMES LARGER THAN THE SMALLEST
GREEK COMMUNITIES

Greek myths

Some of the oldest and best-known stories in the world are the myths of Ancient Greece. They are tales of gods and heroes, great loves, wars, daring adventures, and fabulous beasts. Some of them are told here. To the Greeks of long ago, the myths and the gods who appeared in them were very real.

THE GREEK GODS

In Greek mythology, the gods were powerful supernatural beings who could make anything and everything happen. There were 12 major gods and goddesses, of whom Zeus was king. The gods lived in their palaces on the top of snowcapped Mount Olympus, the highest mountain in Greece.

MOUNT OLYMPUS

HOW THE GODS BEGAN
The Ancient Greeks believed the creators of the world were Uranus, the Sky god, and Gaia, the Earth goddess. Uranus and Gaia had many children, including giants, monsters, and the Titans, first rulers of Earth. The Titans' children became gods and goddesses.

THE UNDERWORLD

In the myths of Ancient Greece, the realm of the dead was known as the Underworld, a shadowy kingdom ruled by the god Hades. There were demons and monsters there. One of the most frightening was the three-headed dog Cerberus, who stood guard at the gates. The souls of those who had died were ferried to the Underworld in a boat across an inkblack river called the Styx.

PUNISHMENTS

FROM THE GODS
Many people were condemned to perpetual punishment in the Underworld because they had offended the gods. For example, Sisyphus, who had tried to become immortal, was made to push a huge rock uphill for ever. Tantalus, who insulted the gods, felt hungry and thirsty all the time, with food and drink just out of his reach.

MYTHICAL BEINGS

Ancient Greek tales were ful of weird creatures. There were beings called satyrs that had the upper body of a man but a lower half like a hairy goat, with hooves instead of feet. More noble were the wise centaurs, who were half man, half horse. A fire-breathing monster called the Chimaera was part lion and part goat, and had a serpent for a tail.

KING MIDAS

In return for helping one of the gods, King Midas was granted a wish. Greedily, he asked that everything he touched be turned to gold. When his food, drink, and even his daughter turned to gold, Midas begged for the gift to be taken away.

BELLEROPHON
AND PEGASUS The young hero Belleroph rode a magical winged horse called Pegasus. Too bold and proud, he tried to fly up to the home of the gods. This so angered Zeus he made Pegasus rear up and throw Bellerophon, who was injured. Lame and blind he became a beggar.

THE TROJAN

HORSE

The Greeks defeated their Trojan enemies by trickery. Outside the city of Troy they left a huge wooden horse, which the Trojans seized. At night, men hidden inside the horse crept out to open the city gates for the Greek army.

THESEUS AND THE MINOTAUR

The flesh-eating Minotaur, half man and half bull, was kept by King Minos of Crete in a winding labyrinth, or maze. Every people from Athens to fo his monster. Vowing to stop the slaughter, the Athenian hero Theseus found a way through the maze. As he went, he unrolled a thread to mark his path. He fought and killed the Minotaur, and then followed the thread to find his way out of the maze.

demeter

PROMETHEUS

The Titan Prometheus stole fire from the gods to give to humans. Furious, Zeus had him chained to a rock, where an eagle constantly pecked at his liver. Prometheus was supposed to stay chained for ever, but the hero Heracles rescued him.

JASON AND THE GOLDEN FLEECE

 that had been taken from him in childhood. To earn his throne he had to steal the fleece of a magical golden ram. Jason found the fleece, but it was guarded by a the serpent to sleep with music. Jason seized the fleece and was allowed to claim his throne.
DEMETER AND PERSEPHONE

Demeter, goddess of grain, had her daughter Persephone stolen by Hades, king of the Underworld. While she grieved, the crops all died. Hades agreed to send Persephone back every spring and summer, so that the corn and flowers could flourish. In winter, when she went back to Hades, nothing grew.

THE ODYSSEY

Among the most often-told myths are the adventures of the hero Odysseus. After fighting in the Greek war against the Trojans, Odysseus spent many years on a dangerous sea voyage trying to get back home. The journey of Odysseus and his sailors is described in the story known as The Odyssey.

- Odysseus ships visit the lotus-eaters. These lazy people offer the sailors fruit that will make them forget the past.

THE VOYAGE HOME

Odysseus sails past the Sirens, who try to lure ships into dangerous water with their song.

MEDUSA
The Gorgon Medusa a monster with snakes for hair, could turn people to stone with one look Perseus, a son of Zeus, killed her He avoided her gaze by aiming at her reflection in a shiny shield lent to him by
 the goddess Athena.

Jason was heir to a kingdom terrible serpent. He asked the hero Orpheus to charm

PANDORA'S JAR

Zeus made a beautiful woman out of clay. He brought her to life and called her Pandora. When she married, he gave her the gift of a sealed jar, telling her not to open it. Pandora's curiosity got the better of her and she opened the lid. All the evil things in the world, such as hatred, disease, and war, flew out. Then one last tiny thing came out of the jar hope for the future.

3

3 THE KERYNEIAN HIND After a long and gruelling chase, Heracles caught a golden-horned deer belonging to the goddess

THE ERYMANTHIAN BOAR
Heracles defeated this ferocious boar
by trapping it in a snowdrift.
5 THE AUGEAN STABLES
The filthy stables of King Augeas had never been cleaned. Heracles changed the courses

THE STYMPHALIAN BIRDS To get rid of some monstrous birds,
Heracles frightened them into the air by playing castanets, and

7 THE BULL OF KING MINOS
Heracles captured a bull belonging to the king of Crete.

8 THE MAN-EATING MARES
Heracles tamed a herd of dangerous meateating horses by feeding their owner to them.

9 the belt of hippolyta

Hippolyta was queen of the Amazon women and terrifying in battle. Heracles dared to steal her valuable belt.
THE 12 LABOURS OF HERACLES
When the hero Heracles went mad and killed his wife, he was punished by being given 12 seemingly impossible tasks.
1 THE NEMEAN LION
The lion had such tough skin
that no spear could pierce it. Heracles managed to strangle the beast.

SLAYING THE HYDRA
The Hydra was a many-headed monster. Every time Heracles cut off one of its heads, two new ones appeared. By sealing each wound he stopped more heads from growing ads from growing.

THE CATTLE OF GERYON
Sent to the edge of the world, Heracles stole the cattle belonging to a giant herdsman.
GOLDEN APPLES OF HESPERIDES
In yet another theft, Heracles took the precious apples belonging to the daughters of Atlas, the giant who carried the world on his shoulders.

12 VISITING THE UNDERWORLD

In his final task. Heracles went to the Underworld and captured the three-headed dog, Cerberus, that guarded the gates. The hero was finally forgiven for his crime.

Now the only

- The sailors kill cattle on an island belonging to Helios the Sun god. Zeus strikes their ship with a thunderbolt, killing everyone but Odysseus.
survivor, Odysseus washes up on the island of the goddess Calypso, where he stays for seven years.

Odysseus finally returns home. He finds many men hoping to marry his wife, Penelope, and take his lands. Odysseus kills all the suitors and the suitors and
keeps his wife.

Ancient Rome

The Roman Empire was one of the greatest empires the world has ever known. At its peak, Rome's armies were almost unchallenged, and its emperors ruled a huge area - from Spain to the borders of Persia, and from North Africa to Scotland.

EXPANSION

Rome began as a humble hill-top settlement in central Italy, but before long, it had conquered Italy. It then took over the northern Mediterranean before expanding into much of northern Europe, North Africa, and the Middle East.

ARMY

The Roman army was the ancient world's most effective fighting force. Professionally trained and armed, it had around 30 legions of 5,000 citizen-soldiers, each of whom served for 25 years.

SOCIAL

STRUCTURE

The empero
ruled the empire. He held enormous power but depended on the support of rich aristocratic families Below them were ordinary Roman citizens. However, women and "foreigners" from places the Romans had conquered did not have citizenship and could not vote

DAILY LIFE

The family played a central role in Roman life. Each household was ruled by the eldest adult male Women carried out domestic chores and performed rituals to household gods.

ENTERTAINMENT

Public entertainment was very important in Roman cities. Romans took part in religious festivals, or went to the theatre, public baths, and horse races. However, the most popular form of entertainment was gladiatorial contests in arenas such as the Colosseum in Rome

COLOSSEUM
In this huge arena people came to see acrobats, wild beast fights, executions, and battles between gladiators

GLADIATORS

JNDERGROUND LIFT

MPEROR'S BOX

The Vikings

No one living between the 8th and 11th centuries welcomed a visit from the Vikings. These wild seafarers from Scandinavia caused widespread terror with lightning raids and looting. But as bold explorers, they travelled far and opened up a wider world.

CLOTHING

Tunics and trousers for men and long dresses for women were usual Viking wear. Most clothes were made of wool or linen and animal skins. Only the rich could afford silks and fancy accessories The women wove and sewed everything.

RAIDING RECORD

The 300-year Viking history is marked out by raids, voyaging, and the colonizing of new lands.

VIKING SOCIETY

At the top of the Viking social scale were the nobility, the uppermost being the jarls. Then came the freemen, such as warriors, craftsmen, and farmers. Lowest on the scale were slaves, or thralls, many of them prisoners of war

TREASURE

Every self-respecting Viking family had their special treasures. Rich folk prized finely crafted gold and silver jewellery. A typical adventurer, whether raider or trader, picked up ornaments and trophies in other lands.

GAMING PIECE
Amber figure used
in a board game.

"EASTER" EGG Christian symbol of

ARMBAND
Solid silver arm ring
with moulded beading

BURIAL CHEST Decorated oak ches made for a ship burial.

HEL Goddess of the
Underworld.

NORSE MYTHS

The ancient Norse myths explain how the world and the first people were created. The stories are full of dragons, magic, warring gods, and giants as wild as the Vikings themselves. According to Norse myth, there is a great battle still to come, which will end this world and start a new one.

THREE MAJOR

 CIVILIZATIONSThe Aztec civilization was based in what is now central Mexico. The Maya occupied southern Mexico, Guatemala, Belize, Honduras, and El Salvador. The Inca empire stretched $4,000 \mathrm{~km}$ (2,486 miles) along the west coast of South America.

DIVERSE CULTURES

As well as the Maya, Aztec, and Inca civilizations, a rich mosaic of other peoples and cultures flourished in the region.

MAYA (с. 2000 вCE-1697 CE) Excelled at astronomy, and devised a way of writing using pictures. There are still millions of Maya in Central

OLMEC (1200-400 BCE)
One of the earliest civilizations of Mesoamerica, their culture was based mainly on farming and trade.

ZAPOTEC (500 bсе-900 CE)

 Based in southern Mexico. Ruled ove its main city, Monte Albán.TEOTIHUACAN (1-750 CE)
Built Teotihuacan, the largest and most impressive city in the ancient Americas.

NAZCA (100-800 CE)

Best known for the massive pictures and shapes (geoglyphs) they etched on the ground in southern Peru.
MOCHE (100-800 CE)
Built huge, mysterious pyramids, from mud bricks, that still dominate the countryside in northern Peru.

TOLTEC (750-1170)

Expert Mesoamerican architects and craftsmen. Built giant pyramids and palaces in their capital, Tula.

CHIMU (1000-1470)
Occupying a large area in the west of South America, they were skilled goldsmiths and architects. Eventually conquered by the Incas.
INCA (1150-1532)
Became the most powerful people in the Andes mountain region when they conquered the city of Cuzco in 1438. They went on to take over many other states for their empire

O AZTEC (1300s-1521)

Originally a wandering tribe, they founded the city of Tenochtitlan in 1325, which become the centre of their mighty empire.

Ancient Americas

Three great civilizations of the Americas flourished in different parts of the continent: the Maya and Aztecs in central America (Mesoamerica) and the Inca in the south, centred in modern-day Peru. These cultures, although different in many ways, all left behind beautiful art and the remains of spectacular cities.

GREAT CITIES

Cities were built in a variety of places. The surrounding landscape and the building materials available had an effect on the look of the buildings. Cities were often dominated by huge temples and other religious buildings

TIKAL
Major Maya city, inhabited from 600 BCE to around 900 CE .

WRITING

Many of the different Mesoamerican cultures used picture-writing to keep records and write about their history. The Inca and their neighbours did not use writing, but recorded information on a quipu, an arrangement of knotted strings.

MAYA WRITING

CHICHEN ITZA
Maya city that was an

mportant trading centre.

CUZCO
The religious and political capital of the Incas.

teotihuacan City state that was destroyed mysteriously around 700 cE .

TIMELINE
The civilizations of the region lasted for 2,000 years, until European explorers and their armies wiped them out. Alban as their capital and religious centre.
c.900-1000 CE
Toltecs build
their capital at
Tula, Mexico.
Toltec pottery

1542
The Spanish establish a capital at Merida and the Maya resistance comes to an end.

			1700 CE
- 1471	- 1502	- 1532	- 1697
Tupac becomes	Moctezuma ll begins	The Inca empire	The very last
king of the Incas	his reign over ten	ends when Spanish	Maya outpost,
and pushes far	million Aztecs. The	warrior Francisco	Tayasal,
south to expand	empire is at its height.	Pizarro captures	falls to the
the empire.		and kills the Inca	Spanish.
		emperor, Atahualpa.	

GODS AND

 GODDESSESThe Mesoamericans and Incas worshipped many gods, most of them to do with nature or farming. People would ask the gods for good weather to make crops grow, or for better health for themselves and their families.

CHALCHIUHTLICUE Aztec goddess of water and storms.

VIRACOCHA
Most important god

XOLOTL
of the Incas.
and lightning.

AZTEC WARRIORS
War was a way of life for the Aztecs. Apart from gaining new land, the main reason for going to war was to capture enemy warriors for sacrifice to the gods.

FUN AND GAMES

Ulama was a fast and furious
ball game played by various cultures, including the Aztecs. We don't know the exact rules, but the aim was for two teams on a special court to try to put a ball through a ring set into a wall.
 AZTEC
APPRENTICE WARRIOR
Carrying wooden spear Carrying wooden spear

RITUAL AND SACRIFICE
Sacrifice was a vital religious ritual. Animals and humans were offered up to feed the gods so that they would look after the earth.
the way they lived, their ideas about life, and how and who they worshipped.

JADEITE JAGUAR MASK

 Aztec, c.1420-1519

ART AND CRAFTS

The pottery, carvings, ceramics, and metalware left behind by the Mesoamerican and ancient Peruvian eltures are a valurce of information about

JADEITE FIGURE Aztec, 1500-1530

CARVED JAGUAR BONES Maya, 400 CE

MOTHER AND BABY Teotihuacan, c. 200 cE

KEY EVENTS

The Ottoman Empire expanded rapidly after it was formed, as the sultans set out to gain new territory for Islam, and also wealth to reward their followers.

1453
Mehmed II conquers Constantinople. The Byzantine Empire ceases to exis.

1514
Selim I invades northern Selim I invades northern
Iraq and takes over most raq and thes over
of the Middle East.

Selim I
mosque, mosque,
Istanbul

1571
Defeat at Battle of Lepanto stops Ottomans from expanding further west. Ottomans join World
War I on the side of the
Central Powers.

Ottoman navy wins control at the Battle of Preveza.

TOPKAPI PALACE
Built in 1460 for Mehmed II, Topkapi was the main palace of the sultans for 400 years.

The Ottoman Empire was one of the biggest and longestlasting empires in history. It was founded in the 14th century by Osman, a Turkish ghazi (Islamic warrior). Two hundred years later, the empire stretched over three continents: Africa, Asia, and Europe. It was ruled over by a series of powerful sultans, with the help of armies of slave-soldiers.

POWERFUL SULTANS

The Ottoman Empire was ruled by descendants of the same family for 600 years. The sultans formed strong governments, and life under Ottoman rule was mostly peaceful and safe for ordinary citizens.

OSMAN I (GAZI) (c.1258-1326)
The founder and first sultan of the Ottoman Empire. A successful military general who extended Ottoman territory throughout his 27-year reign.

A great mil (THE CONQUEROR) (1432-81) conquered territories in Anatolia and the Balkans.

SELIM I (THE GRIM) (1470-1520)
Selim came to power after a civil war. He killed his brothers, and others who might have had a claim to the throne after his death, so that his chosen son, Suleiman, could become sultan

SULEIMAN I (THE MAGNIFICENT) (1494-1556) During his 46 -year reign, the Ottoman Empire became a world power. Suleiman's reign was also a time of great achievements in literature, poetry, art, and architecture.
 O ABDULMECID I (1823-61) Responsible for an ambitious reform of the army, schools, and other institutions, Abdülmecid hoped this reform would make the declining empire competitive with other European countries.
 SULEIMANITHE MAGNIFICENT

THE SULTAN'S LOYAL MEN

The Ottomans operated a system called devshirme (gathering), in which Christian boys from conquered countries were made slaves, converted to Islam, and taught total loyalty to the sultan. They were then trained to do important jobs within the sultan's household and army.
WHEN SULTAN MEHMED II
TOOK POWER, HE PUT ALL HIS
BROTHERS TO DEATH, TO
PREVENT PLOTS AGAINST HIM

MARK OF

THE SULTAN

The tughra was the
personal seal of the Ottoman emperors. All important documents, coins, and letters from the sultan carried a symbol, which was different for every ruler. The tughra was based on Arabic calligraphy. It was designed at the beginning of the sultan's reign and drawn by the nișancı (court calligrapher) on to court papers.

TUGHRA OF SULTAN MAHMUD II (reigned 1808-39) It reads Mahmud Han bin Abdulhamid muzaffer daiman: "Mahmud Khan, son of Abdulhamid, is forever victorious".

JANISSARIES
JANISSARY

MASTER BUILDERS

Ottoman rulers commissioned many magnificent palaces and mosques as symbols of their great power, as well as to show their devotion to Islam. Ottoman architects were inspired by both Islamic and European art, and their buildings are a lively mix of both traditions.

DOLMABAHÇE PALACE Home to six sultans until the

ART AND DECORATION

As the Ottoman Empire grew richer and more powerful, artists and craftspeople were in great demand to produce art and objects for the sultan's palaces. The town of Iznik was particularly famous for beautiful ceramic tiles and pottery, which were decorated with flowers and intricate plant motifs and Arabic script, mainly in vivid shades of blue and green.

IZNIK PLATE

IZNIK CERAMIC TILES

WEAPONS AND ARMOUR

During the reign of Suleiman I, the Ottoman army was the largest and most successful in Europe. The sultan's troops were highly trained, well disciplined, and equipped with the latest weapons and armour.

CHICHAK (HELMET)

BREASTPLATE

MACE, DAGGER
CAVALRY BOOTS

JEWELS AND FINERY

The Ottomans' taste was influenced by the variety of cultures across their vast empire. Jewellery was ornate and generally mixed different metals and gems in one piece. Emeralds and jade were popular because green was associated with the prophet Muhammad.

FATEHPUR SIKRI (CITY OF VICTORY) Founded in 1571 by Akbar, to celebrate his milit

TOMB OF HUMAYUN

MOTI MASJID (PEARL MOSQUE) victories at Chittor and Ranthambore

MUSLIM ART

Muslims were against showing people or animals in religious art, so sacred buildings were decorated with geometric patterns, plant and flower motifs, and decorative writing (calligraphy).

LEAF GEOMETRIC DESIGN

FLOWER DESIGN MARBLE INLAY

OCTAGON AND SQUARE PATTERN
FLOWER DESIGN MARBLE INLA

CALLIGRAPHY ON
MOSQUE ENTRANCE

JE ENTRANC

DAZZLING CRAFTWORK

Art was greatly valued by the Mughals. The most skilled painters, craftworkers, jewellers, and textile designers from all over the empire were commissioned to produce exquisite works to adorn the emperor's palaces.

Richly decorated borders were borrowed from Persian miniatures

TOMB OF SAFDARJUNG
Completed in 1754 in New Delhi, this is one of the last great buildings of the Mughal Empire.

Imperial Japan

The story of Japan's Imperial Age is filled with feuding clans and warlike samurai, constantly battling for wealth and power. But it was also a place where art and culture flourished, and where honour was respected above all.

RULE OF THE SHOGUNS

Although the ruler of Japan was the emperor,
the country was really governed by the shogun. He was the most powerful of a group of wealthy influential military generals called daimyo.

EMPEROR
The emperor was the deeply respected religious and cultural figurehead of Japan, but held little political power.

SHOGUN
The most powerful daimyo (military leader) and the real ruler of Japan. The first shogun seized power in 1192, and for most of the by a succession of shoguns.

SAMURAI

Highly trained professional warriors, bound by a solemn oath of loyalty to their daimyo. In times when there were no wars to fight, the samurai perfected their skills in music, poetry, and art.

MAGNIFICENT CASTLES

In the 16th century, noble families, who were often at war with their neighbours, built mighty fortresses to protect their land and armies. These magnificent castles also served as symbols of the clans' power and wealth

HIMEJI CASTLE
Also called the Castle of the White Heron, because its delicate, curved roofs resemble birds' wings.

FAITH AND WORSHIP

Most people followed a faith called Shinto - "the way of the gods" - a belief that all living things possess a divine spirit called kami. Worshippers held rituals and left offerings to the kami at specially built shrines all over Japan.

SHRINE ENTRANCE AT MIYAJIMA, SOUTHERN JAPAN The gateway to a Shinto shrine is called a torii.

SAMURAI WARRIORS

Samurai were men of noble birth who were
trained in all aspects of fighting and war.
They were the only people allowed to carry a katana and a wakizashi la pair of swords known collectively as daishol in public.

The Kabuto (helmet) often featured a decorative crest

Cheek and neck _ protector protection and to
scare enemies

NITTA YOSHISADA

SAMURAI CODE

Loyalty and honour were essential to the samurai They lived by a strict, seven-point code called Bushido, which means "the way of the warrior"

GI	Integrity	JIN	Kindness
REI	Respect	MAKOTO	Sincerity
YU	Bravery	CHUGI	Loyalty
MEIYO	Honour		

WEAPONS AND ARMOUR
The samurais favourite form of fighting was hand-tohand combat with knives and swords. They were also and later, guns.

ART AND CRAFTS
In 1603 the city of Edo (now Tokyo) became the capital of Japan. In the 260 years of peace that followed, art and culture flourished as never before. Edo artists and craftsmen produced beautiful work, from delicate ivory carvings to bold, colourful paintings and prints showing city life.

WOODBLOCK PRINT OF EDO
BY UTAGAWA HIROSHIGE 1857

CERAMIC
INCENSE
BURNER
$1600-50$

MUSIC AND THEATRE

Going to the theatre and listening to music were popular pastimes for the wealthy. Noh theatre was a solemn form of storytelling, performed by actors in masks. Kabuki plays were much livelier

ERAS AND EVENTS
Japan's Imperial Age began around 700 cE . Before then, the area was made of several smaller chiefdoms. The age effectively ended in 1868, when the modern era began. Japanese history is split into periods. A new period began at the start of the reign of a new emperor or with a similar major event.
$\rightarrow 1156$ Civil war between several clans

Woodblock print of Minamoto Tametomo fighting in the civil war
$\rightarrow 1192$ After 30 years of civil war, Minamoto Yoritomo becomes shogun. The emperor's power is taken from him and he is reduced to a figurehead.

- 1281 Mongols attempting to invade Japan are forced back
by a typhoon that the Japanese name kamikaze, or "divine wind"

Invading Mongols are forced back by a typhoon

- 1568 Oda Nobunaga seizes power in Kyoto His army is equipped with muskets acquired fro
Portuquese traders.
\rightarrow c. 1600 Art and culture flourish in the Edo period - beautiful objects are created by master craftsmen

Imperial China

China is one of the world's oldest civilizations, having lasted more than 4,000 years. It was an empire from 221 bCE until 1912, making it the longest-lasting empire in history.

ANCIENT WONDERS

The empire, with its vast wealth, technological skills, and unlimited manpower, created some of the biggest and most magnificent works of engineering and architecture ever made.

FORBIDDEN CITY Enormous palace and fortress built in Beijing from 1406-21

TERRACOTTA ARMY 8,000 life-size statues buried along with Emperor Qin Shi Huang

GREAT EMPERORS

Some strong emperors had long reigns, but many emperors were deposed or assassinated. At times, China was split among warring emperors.
O QIN SHI HUANG
(QIN DYNASTY, 259-210 BCE)
He conquered neighbouring states to become the first emperor of a unified China and founder of the Qin Dynasty.

- HAN WUDI
(HAN DYNASTY, 156-87 bCE)
Seventh emperor of the Han, he ruled for 54 years. During his reign, China's wealth and territory increased

WU ZETIAN
(TANG DYNASTY, 624-705 CE) Chinas only female emperor. She was the wife when he became ill. Eventually, she declared herself China's sole ruler.
YONGLE
(MING DYNASTY, 1360-1424)
The third Ming emperor, known for his ruthlessness and cruelty. He moved the Chinese capital from Nanjing to Beijing and built the Forbidden City.

KANGXI

(QING DYNASTY, 1654-1722)
The longest-reigning emperor, he
took the throne at the age of eight. His 61 -year rule was a time of pea
and prosperity and prospe
for China.

THE GREAT WALL
 built during the Ming dynasty to keep China s northern enemies
out, was around $8,850 \mathrm{~km}$ (5,500 miles) long.

105 ce
An imperial court official
reports the invention of paper
c. 250

1420
Beijing is named as the new capital of China
1839-1860
In the Opium Wars, China and Western nations battle over trade.

Medieval Europe

A thousand years of European history, from around the 5th to the 15th century, are known as the medieval era, or Middle Ages. This is often imagined as a colourful time of jousting knights and moated castles, but for most people life was hard.

WHAT

 THEY WOREMost people dressed in wool and linen. The style and quality of their clothes told everyone whether they were rich or poor. Rich people wore bright colours, as well as expensive materials and furs.

Medieval people had very firm religious beliefs. Europe was mostly Christian, but there were some Jews, and the Middle East was mainly Muslim.

THE CRUSADES
In a long-running series of wars
called the Crusades, Christian European armies tried to drive Muslim rulers out of the Holy Land. They captured Jerusalem, only to lose the city again later.
ROUTES BY LAND AND SEA

- 1st Crusade, 1096-99
- 2nd Crusade, 1145-49
- 3rd Crusade, 1189-92

4th Crusade, 1202-04

JOUSTING

A mock one-to-one fight on horseback, jousting was a dangerous sport. Two knights charged at one another, each trying to unseat the other with his lance.

HELMET

CRIME AND

PUNISHMENT

The law in medieval times was very brutal. Cruel instruments of torture were used both as punishments and to force people to admit guilt or divulge information. Many castles had a torture chamber hidden in their lower depths.

ARMOUR AND WEAPONS

In the 12th century, knights wore chain-mail armour made from linked iron rings. By the 15th century, battledress was more often a suit of steel plates. Men fought with swords and long-handled weapons such as picks and axes

CUIRASSIER
 -

HORSE HEAD ARMOUR

MOUTH SCREW

TIMELINE

There is no clear beginning or end to the medieval period. Generally, it is dated from around the late 5th century to the middle of the 15th century.

Muhammad,
Islam's most important prophet, is born.

0S7
476
in Western Empir ends. This is the approximate start of the medieval era Middle Ages.

732
At the Battle of
Tours, European armies defeat Muslim invaders

793
Vikings from
Denmark,
Norway, and
Sweden begin
their raids in orthern Europe.

French fortress built for William the Conqueror

William the Conqueror of Normandy conquers the English at Hastings and of England.

Church inside Crusader fortress

1206 The Mongol Empire is founded by Genghis Khan.
$1431=$
French heroine Joan of Arc is executed by the English and their
French allies at the age of 19 . 1453 Constantinople last outpost of the Eastern Roman Empire This marks the approximate end of the Middle Ages

Castles

A castle was the imposing residence of a lord, built as a fortress, to withstand enemy attack. It was also a community where the lord and his family, his garrison of soldiers, and his many servants lived and worked.

TYPES OF CASTLE
The design of castles changed as weapons of attack developed. The earliest castles were built from earth and timber. Then, during the 12th century, lords began to build castles from stone. Although they took longer to build and more skill, they were much stronger and did not burn like wood

MOTTE AND BAILEY 11 th and 12 th centuries. A wooden castle is built on a motte (mound), surrounded by a fortified enclosure

CONCENTRIC

 12th-15th century. A central ortress is surrounded by ayers of stone walls.STAR FORT 15th-20th century. Shape deflects cannon fire and allows defenders to fire from several angles.

INSIDE A CASTLE

A castle was like an enclosed village, with kitchens, gardens, stables, workshops, a chapel, and living space all contained within its walls. If the castle was surrounded by an enemy, the people inside had everything they

BUILT FOR

DEFENCE

Many castles had features to make it as difficult as possible for attackers to get inside. Towers were built on either side of the vulnerable gatehouse, so that defenders could rain missiles or boiling water down on uninvited visitors. Often the lord chose to site his castle on a hillside or clifftop so that he and his men had a good view of anyone approaching

MOAT
A wide, steep-walled ditch around the castle, usually filled with water

gatehouse
The main entrance was often fortified by a movable iron grate called a portcullis.

ARROW AND GUN LOOPS The thick walls had narrow slits through which a soldier could fire missiles at attackers.

GATEHOUSE CEILING HOLES Boiling water or other harmful liquids could be dropped on to intruders.

SPIRAL STAIRCASE Narrow, spiral staircases meant that invaders could not easily use swords while climbing.

THE REBIRTH

OF EUROPE

The Renaissance began in northern Italy towards the end of the 14th century. Two hundred years later, its influence had spread all over the world

c. 1420

Architect Filippo Brunellesch rediscovers perspective, meaning that objects can be drawn to look as if they are near or far away.

Arches drawn

The Renaissance

The Renaissance is the name given to a time of huge cultural change in Europe, beginning in the late 14th century. Scholars rediscovered the writings of the Ancient Greeks and Romans, and this led to an explosion of new ideas about science, art, and politics.

WHERE IT
 BEGAN

The Renaissance began in the richest parts of Europe. The city-states of northern Italy were full of wealthy noblemen, bankers, and merchants who were eager to show off their wealth and power by supporting artists and inventors. In northern Europe, scholarship and new ideas flourished in the prosperous wooltrading regions of what is now Belgium, Germany, and the Netherlands.

KEY
-Major Renaissance cities

POWERFUL PATRONS
The Medici family were rich bankers. From 1434 they ruled the city of Florence, and commissioned artists such as Leonardo da Vinci and Michelangelo to produce many great buildings and works of art.

RENAISSANCE MEN

During the Renaissance, many of the most influential people did not focus solely on one subject, but became expert in a range of disciplines

O LEONARDO DA VINCI (1452-1519)

A true all-rounder, Leonardo was a brilliant painter inventor, sculptor architect, and scientist. His Mona Lisa is probably the best known painting in history.

MARTIN LUTHER (1483-1546)
German monk and university professor. He attacked corruption in the Roman Catholic Church, was excommunicated, and became a key figure in the Protestant Reformation.

PARACELSUS (1493-1541)
Swiss scientist who studied medicine and found that many doctors made patients worse rather than healing them. He used his knowledge of chemistry to develop new drugs and medicines.

MICHELANGELO (1475-1564)

Artist, architect, and sculptor who painted the ceiling of the Sistine Chapel, part of the Vatican in Rome. The ceiling contains more than 400 life-size figures and took four years to complete

O NICCOLO MACHIAVELLI (1469-1527)
A diplomat and writer from Florence. His book The Prince gave advice to ambitious politicians is still sused the the worlia is still used today to describe ruthless or cunning behaviour

FLYING MACHINE
Leonardo da Vinci's design for the Leonardo da Vinci s design for the
ornithopter, a human-powered aircraft.

Dutch scholar Erasmus publishes his book Praise of Folly, which pokes fun at superstition
-1511
Raphael completes the fresco The
School of Athens to decorate a wall in the Vatican, the Pope's palace.
$\rightarrow 1527$
Rome is sacked by the army of
Charles V, the Holy Roman Emperor.

- 1543

Doctor Andrea Vesalius publishes the first textbook about the human body and how it works

-1546
Michelangelo appointed
Chief architect at St
Peter's Basilica, Rome.

Giorgio Vasari publishes a massive history of Renaissance art: The Lives of the Artists.

MUSICAL INSTRUMENTS
Music was the main form of entertainment
in Renaissance Europe. Composers
experimented with new instruments and different ways of singing in harmony.

RAUSCHPFEIFE
Reeded wind instrument

BASS RECORDER

GOLDEN AGE OF

 ARCHITECTUREArchitects were inspired by the ruins of Ancient Roman and Greek buildings. They studied ancient writings on geometry and proportion in order to make buildings that were both beautiful to look at

DUOMO, FLORENCE
Completed in 1436, the duomo (cathedral) is topped by a huge, octagonal dome designed by sculptor and architect

Filippo Brunellesch

THE INTERIOR OF ST PETER'S BASILICA WAS DESIGNED TO HOLD UP TO 60,000 PEOPLE

Dome designed by Michelangelo

A REVOLUTION IN ART

A way of thinking called humanism became popular during the Renaissance. Humanism's focus on the experiences and achievements of real human beings had a huge influence on artists. They started to portray people, including religious figures, as realistically as possible, and to place them in more everyday situations.

FRESCO (WALL PAINTING) OF THE QUEEN OF SHEBA (1466) Piero della Francesca

MONA LISA (1503-06) Leonardo da Vinci
statue of dAVID (1501-04) Michelangelo

PIETA (MARY holding Jesus)
(1553) Michelangelo

NEW ARTISTIC

 TECHNIQUESRenaissance artists wanted thei work to look realistic. They rediscovered ancient techniques and developed new ones to make their subjects and backgrounds Look as much like those in the real world as possible.

LINEAR PERSPECTIVE Perspective was used to give an artwork a sense of depth. For instance, if an artist drew a line of trees, he would make them smaller and closer together as they got further away from the foreground (front) of the drawing

AERIAL PERSPECTIVE Also called atmospheric perspective. It was a way of creating depth and distance especially in a landscape, by making features paler and less detailed, the further away they got from the foreground.

HARMONY AND PROPORTION Drawing objects so that they are precisely the right size when ompared to each other. Artists Roscovered Ancient Greek and Roman writings, which set out ow mathematics could be used work or would have perfect balance and harmony, they believed.

Exploration

The first explorers set sail in search of new places to buy and sell goods. Later, people led expeditions to get rich, to claim territory for their country or religion, to make scientific discoveries, or simply for the thrill of adventure.

EXPLORERS OF THE

 ANCIENT WORLDThe earliest explorers were the Phoenicians and the Egyptians, who wanted to find markets to trade their goods. Later cultures, such as the Romans and Vikings, also wanted to conquer new territories to expand their empires.

THE AGE OF EXPLORATION

In the early 15th century, Portuguese sailors set out to find a sea route to Asia. This triggered a wave of exploration, as rival countries found new trading routes and established colonies all over the world

KEY

- Magellan's route
-Other Spanish missions \rightarrow Portuguese expeditions
\rightarrow English expeditions
\rightarrow French expeditions
\longrightarrow Dutch expeditions

SOME EXPEDITIONS TOOK MANY YEARS, AS THE SHIPS COULD ONLY COVER ABOUT 160 KM (100 MILES) IN A DAY

NAVIGATION TOOLS

Sailors exploring new territories had no maps to guide them, so they had to find their way by other methods. Navigators used a compass to find the right direction, and they calculated their position by observing stars and planets.
 18th century, Italy.

ASTROLABE Allowed sailors to use the
stars to navigate.

Used to identify landmarks

SCIENTIFIC JOURNEYS

In the 19th century, the thirst for knowledge was so great that scientists and naturalists such as Charles Darwin embarked on long and dangerous trips to search out new species of animals or plants.

INSECT DRAWINGS
Sketched by naturalist
Henry Bates.
SNOUTFISH
ollected by explorer

ADVENTURERS OF THE GOLDEN AGE
Exploration was a risky business but the rewards were potentially huge Successful explorers could expect fame wealth, and personal favours from a grateful monarch

O CHRISTOPHER COLUMBUS

(1451-1506) Italian sailor Columb was paid by King Ferdinand and Queen Isabella of Spain to find a se route to China. Instead, in 1492, he found America and called it the New World.

- VASCO DA GAMA
(c.1460-1524) A Portuguese explorer, he led the first expedition to sail round the Cape of Good Hope, at the tip of Africa, to India.
- HERNAN CORTES
(1485-1541) A Spanish
FERDINAND conquistador soldier), Cortés MAGELLAN trading colony for Spain bet up a up destrown or Spain, but ended up destroying the entire Aztec Empire in Central America.
O SIR WALTER RALEIGH (c.1552-1618) An English adventurer who tried unsuccessfully to set up colonies in the New World but who is best remembered for bringing tobacco back to Europe

POLAR PIONEERS

In the 19th century, the cold, hostile regions of the Arctic and Antarctic were largely undiscovered. Explorers from many different countries joined the race to be the first to conquer the North and South poles.

WINDPROOF HOOD Worn by Sir Ernest Shackleton on his South Pole attempt of 1907-08

INUIT (ESKIMO) KNIVES WITH BONE HANDLE Made of steel from the abandoned ship of Sir John Franklin, who failed to find a sea route through the Arctic Ocean, north of Canada.

CLASP KNIFE AND SEXTANT
Used by Captain Robert Scott on his
South Pole expedition of 1912.

CROSS-COUNTRY SKIS
Used by Captain Scott in his first South Pole expedition, 1901-04.

Revolutions

Political revolutions have occurred throughout history and can completely change society. Often violent, they typically occur when angry citizens rebel against their rulers to demand a fairer society, and frequently a different leadership. Revolutions can change existing power structures very quickly. However, their causes have usually been building over many years.

ENGLISH CIVIL WAR TROOPER'S HELMET

ENGLISH CIVIL WAR

This period of intense political activity started when Parliament wished to restrict the authority of King Charles I. Civil war broke out and ended with the execution of the king in 1649. For ten years, England was a republic ruled by Lord Protector Oliver Cromwell.

1648-53

THE FRONDE

A series of uprisings called the Fronde took place in France, initiated by the French Nobility and supported by the middle classes. They were rebelling against the King's absolute rule, and discontent later spread to the masses. After the Fronde failed, the King became even stronger.

STATUE OF KING LOUIS XIV

LEADER OF THE VIET MINH
AUGUST REVOLUTION
In 1945 Ho Chi Minh and his mainly communist force the Viet Minh set out to liberate Vietnam from French rule. They seized Hanoi and declared independence but French forces retaliated. This led to the First Indochina War and the start of bitter conflict in the region

GENERAL FRANCO: DICTATOR OF SPAIN 1939-75

1930	1918-23
$\begin{aligned} & \text { BRAZILIAN } \\ & \text { REVOLUTION } \end{aligned}$	$\begin{aligned} & \text { GERMAN } \\ & \text { REVOLUTION } \end{aligned}$
Economic hardship, powerful landlords, and demands for workers' rights led to revolution in Brazil in 1930. A provincial governor called Getúlio Vargas seized power. A dictator at first he introduced reforms that modernized Brazil and earned him the nickname "Father of the Poor".	A series of revolutions shook Germany immediately after World War I (1914-18). Communists Rosa Luxemburg and Karl Liebknecht led the Spartacists' uprising against the government, but it was brutally quashed. Later, extreme nationalists, led by Wolfgang Kapp, tried to seize power, blaming the Weimar Republic for betraying the German Empire.

1917

STATUE OF LENIN, BOLSHEVIK LEADER

OCTOBER
REVOLUTION
Two revolutions happened in Russia in 1917. The first, in March, removed the tsar (ruler) and set up a provisional government. In the second, in October, the Bolshevik party, led by Vladimir Ilyich Ulyanov (Lenin), called for "peace, land and bread". They seized power and in 1922 set up the Soviet Union, the world's first Communist state.

REVOLUTIONARY CHE GUEVARA
BECAME A WORLDWIDE HERO

CUBAN REVOLUTION

An armed revolution led by Fidel Castro and Che Guevara overthrew the USA-backed dictatorship of President Batista. Cuba became a revolutionary socialist state and later a Communist country.
>1956

HUNGARIAN REVOLUTION

After World War II (193945), Hungary became a Communist state, under the influence of the Soviet Union. In 1953 Imre Nagy, a moderate socialist, became leader, and in October 1956 he called for Hungary to become independent in an anti-Soviet uprising. The Soviet troops invaded Hungary and put down the uprising with great brutality.

CARNATION REVOLUTION

On 25 April 1974, army rebel tanks rolled into Lisbon, Portugal, and seized control of the city's communications. They overthrew the government of Prime Minister Marcello Caetano, ending 50 years of dictatorship. The revolt was called the "carnation revolution" because the people gave carnations to the troops as they entered the city

1974-77

ETHIOPIAN REVOLUTION

In September 1974, Mengistu Haile Mariam led an alliance of radical armed forces and police (the Derg) to depose the emperor, Haile Selassie. They executed the emperor and set up a Communist state. The coup was followed by years of bloodshed and civil war.

1775-83
 AMERICAN REVOLUTION

In the mid-1770s American colonists revolted against British rule and "taxation without representation". They issued a Declaration of Independence War broke out in 1775 , ending in 1783 with the colonists winning independence and creating the United States of America.

THE STORMING OF THE BASTILLE,
THE STORMING OF THE BASTILLE,

FRENCH REVOLUTION

This rebellion was against poverty, the nobility, and the royal family. In Paris revolutionaries demanding political change stormed the Bastille. A National Assembly was formed and the Declaration of the Rights of Man called for liberty, equality, and fraternity (brotherhood). King Louis XV and his wife, Marie Antoinette, were executed and France became a republic.

1791-1804
HAITIAN REVOLUTION
In the French colony of SaintDomingue, former slave Toussaint L'Ouverture led slaves in a rebellion against slavery, burning plantations and killing their owners. Slavery was abolished on the island, which became independent Haiti.

1866-68

EMPEROR MEIJI
RULED 1867-1912

MEIJI
 RESTORATION

Led mainly by young samurai, this revolution in Japan overthrew the Tokugawa shogunate (hereditary military rulers) and restored imperial rule under Emperor Meiji. The revolution led to reforms that modernized Japan.

1806-24

LATIN-

AMERICAN

 REVOLUTIONS
Influenced by the American, French,

 and Haitian revolutions, LatinAmerican revolutionaries led by men such as Venezuelan Simón Bolívar and Argentinian José de San Martin rose up against Spanish colonial rule. By 1825 most of Latin America had gained independence.

Often called "the year of revolutions in 1848 more than 50 uprisings broke out across Europe. Although these revolutions happened independently, people across the continent were banding together to demand political and social change and an end to monarchies. Thousands were killed as the uprisings were put down.

THE HUNGARIAN TRICOLOUR FLAG, A SYMBOL OF THE 1848 REVOLUTION

1979

NICARAGUA

In the 1970s there were extremes of rich and poor in Nicaragua. Supported by peasants, urban workers, and the middleclasses, the guerrilla troops of the Sandinista National Liberation Front (FSLN), threw out wealthy dictator Anastasio Somoza. They introduced new socialist reforms. Later, rebel groups called the Contras fought back against the Sandinistas, who lost power in 1990.

SOLIDARITY IN POLAND

Revolution broke out in Poland when the independent trade union Solidarity organized workers' strikes, under Wadership of Lech liberation from Soviet control, and their actions forced the Polish government to introduce reforms Solidarity was banned but continued their resistance until hey took power

MONUMENT TO THE HIPYARD WORKERS GDANSK, POLAND

YELLOW
RIBBON

YELLOW

REVOLUTION
The Yellow Revolution was a series of mass popular protests in the Philippines against the corrupt regime of President Marcos. In this non-violent revolution more than two million Filipinos demonstrated for greater democracy, displaying yellow ribbons as a symbol of protest. Marcos departed and was replaced by Corazon Aquino

US Presidents

Since the office was created in 1789, there have been 43 presidents of the United States, all men. To be eligible, a person has to be at least 35 years old and born either in the USA, or overseas to US-citizen parents. As well as being Head of State, the president is Commander-in-Chief of the country's armed forces.

WILLIAM HENRY HARRISON 1841
The first president to die in office. He died of pneumonia only a month after he became president.

JOHN TYLER 1841-45 Vice-president who took the presidency on the death of William Henry Harrison, making him the first president to serve without being elected to office.

JAMES K POLK 1845-49 Greatly expanded the territory of the USA, adding Texas, Wisconsin, and lowa as states, and taking over land in the west that would become New Mexico and California.

ZACHARY TAYLOR
1849-50
Successful military general who commanded US forces in the war against Mexico (1846-48). Died of cholera a year after taking office.

GEORGE WASHINGTON 1789-97
Led army against the British in the American Revolution, then became the first president. Unanimously elected.

JOHN ADAMS
1797-1801
Helped draft the Declaration of Independence. Established the naval department, so he is remembered as the "Father of the Navy"

CHESTER A ARTHUR
1881-85
Brought in a law that meant that civil servants were hired purely for their ability rather than because of their political connections

GROVER CLEVELAND 1885-89; 1893-97 The only president ever to serve two non-consecutive terms - he lost an election, then was voted back in again four years later.

BENJAMIN HARRISON 1889-93
Grandson of President William Harrison, during his term the country expanded and six new states were admitted to the Union.

WILLIAM MCKINLEY
1897-1901
Oversaw expansion of US territories, including Hawaii and Puerto Rico. Six months into his second term, he was assassinated.

MILLARD FILLMORE
1850-53
Tried to make a compromise between the anti-slavery states and the slaveowning states in the south, but the peace was short-lived.

FRANKLIN PIERCE
1853-57
Allowed new states to decide for themselves whether to allow slavery, which angered many and edged the USA ever closer to civil war

DWIGHT D EISENHOWER 1953-61
Led the Allied armed forces in World War II. During his two terms of office, the US economy thrived.

JOHN F KENNEDY
1961-63
His work to reform civil rights and promote racial equality was cut short when he was shot dead in Texas.

LYNDON B JOHNSON
1963-69
Brought in the Civil Rights Act, but faced opposition for sending more troops into the war in Vietnam.

RICHARD NIXON

1969-74

Ended the Vietnam War and improved relations with the USSR. His term ended in disgrace after political corruption was uncovered.

THEODORE ROOSEVELT

1901-09

The youngest person to become president, at 42. Won the Nobel Peace Prize in 1906 for negotiating peace between Russia and Japan.

1909-13
A lawyer by profession, he set up the postal savings bank and passed a law allowing states to collect income tax.

THOMAS JEFFERSON 1801-09
The main author of the Declaration of Independence, which stated that the colonies would no longer accept British rule.

JAMES MADISON
1809-17
Helped draw up the US Constitution, which set out America's laws and guaranteed certain rights for its citizens.

JAMES MONROE

1817-25

Remembered for the Monroe Doctrine, which declared that the USA would resist attempts by other countries to establish
colonies in the Americas

ANDREW JOHNSON
1865-69
Put on trial by the Senate for violating the Tenure of Office Act, he escaped being removed from office by a single vote.

ULYSSES S GRANT
1869-77
A hero of the Civil War, he was an inexperienced politician whose presidency was overshadowed by scandal and corruption.

ABRAHAM LINCOLN
1861-65
Opposed to slavery, he led the country during four years of civil war. Days after the war ended, he was shot dead by John Wilkes Booth.

WARREN G HARDING

1921-23

An unpopular president who was dogged by rumours of financial wrongdoing. He died suddenly, before an investigation could begin.

Honest, hard-working, and modest, he was fondly nicknamed "Silent Cal" Under his presidency, the US economy boomed.

ANDREW JACKSON
1829-37
Before he took office, he became a national hero for leading the army that defeated the British at the Battle of New Orleans.

MARTIN VAN

 BUREN1837-41
After financial panic and stock market crash led to economic depression, Van Buren became unpopular and was not re-elected.

RUTHERFORD B HAYES 1877-81 After winning one of elections ever he fough end corruption in politics and public life.	JAMES A GARFIELD 1881 Shot dead after only 200 days in office, before he could carry out his promis and other public bodies.

HERBERT HOOVER
1929-33
Shortly after his election, the USA began an era of serious economic depression. Hoover was blamed and did not win a second term

HARRY S TRUMAN
1945-53
Authorized the dropping of two nuclear bombs on Japan, which ended World War II. Took the USA to war with Korea.

GEORGE H W BUSH
1989-93
An oil tycoon and ex-head of the CIA, he took the USA and its allies into the first Gulf War with Iraq (1990-91).

BILL CLINTON

1993-2001

Presided over a time of peace and prosperity, but his reputation was damaged by a scandal over a relationship with a White House worker.

GEORGE W BUSH
2001-09
After the terrorist attacks of
9/11, he ordered the invasion of Afghanistan and declared the War on Terror.

A US PRESIDENT CAN
ONLY BE ELECTED
TWICE, SERVING UP TO TEN YEARS UP

BARACK OBAMA

(2009-)

The first African American president. His healthcare reforms were disliked by opponents, and led to stalemate in government.

US Civil War

In the early 1860s, the USA, then known as the Union, was torn apart by war. The northern states had made slavery illegal and believed it should be abolished in the rest of the country. The southern states disagreed. Their landowners relied on African slaves to farm their tobacco and cotton. Some southern states felt so strongly, they left the Union.

EVENTS AND BATTLES
Less than a century after gaining its
independence, the USA was in danger of breaking up. More than 50 major battles and 5,000 minor ones were fought before the Unionists finally won the war.

1860

20 DECEMBER 1860
South Carolina withdraws from the Union. Six states follow by February 1861.

TRANSPORT INNOVATIONS

The 1830s had seen the birth of the railways. Both sides relied on steam trains to transport troops and supplies, but the North had more than twice as much track as the South. Other advances included the appearance of armoured steam warships, called ironclads, and early submarines.

WEAPONS AND CONFLICT

The Civil War was the first in which large numbers of infantrymen were armed with rifles instead of muskets Rifles shot further, and with greater accuracy. The repeating rifle, introduced in 1863, was even better - it

AFRICAN AMERICAN SOLDIERS

Roughly a tenth of the Union army was made up of African American soldiers (179,000). There are no records of how many slaves were forced to fight for the South
 UNION ARMY

African American White soldiers

UNION FIGURES

The people on this side were loyal to the United States of America. They were nicknamed "Yanks" or "Yankees"

ABRAHAM LINCOLN (1809-65)
As US president, Lincoln led his country
through the war, abolished slavery, and through the war,
saved the Union.

- ULYSSES S GRANT (1822-85)
Generat Grant led the Union army from 1862 onwards. After the war,

JOSHUA CHAMBERLAIN (1828-1914)
Chamberlain heroically led a crucial bayonet charge at Gettysburg ROBERT SMALLS (1839-1915) A southern slave, Smalls freed himself, took over a Confederate ship,
then fought on the side of the Union.

CONFEDERATE FIGURES

People from the rebel states in the South broke away from the Union and
formed a new country, the Confederacy.

JEFFERSON DAVIS (1808-89)
A soldier and senator, Davis was the president of the Confederate States of America.
ROBERT E LEE (1807-70)
Virginia-born Lee became th
supreme commander of all supreme commander of al

O JOHN BROWN GORDON
(1832-1904)
This fearless Confederate general was wounded so often that people was wounded so often that
said he must be invincible.

BELLE BOYD (1844-1900)
A notorious spy, Maria "Belle"
Boyd gathered information
from Union soldiers.

 ESSENCE

Both Union and Confederate leaders made use of the newly invented electric telegraph. They could send messages to generals on the battlefield and receive updates on the fighting.

BLOCK
OF TEA

MEDICAL ADVANCES

Although basic hygiene was still poor, great strides were made in treating the wounded. Horse-drawn ambulances transported casualties between field hospitals. Women worked as nurses on the battlefield for the first time.

SET OF AMPUTATION KNIVES

LIVES LOST

In total, an estimated 620,000 men lost their lives in the Civil War. Where possible, Union soldiers received a proper military funeral, but the military cemetery in Washington DC soon filled. Arlington, Virginia, the family estate of Confederate General Robert E Lee's wife, Mary, was taken over for the new state cemetery.

ARLINGTON CEMETERY

BOX OF INSTRUMENTS

FORCEPS

CONFEDERATE DRUM
Those too young to carry a rifle enlisted as drummer boys. During battle, their drum calls communicated commands to the men.

AGE OF IMPERIALISM
The growth of European empires spanned several hundred years, and led to wars, revolutions, and rebellions by those who were unwilling to be controlled by foreign nations.

1500s

The Portuguese and Spanish start to explore widely, especially around South America.

Model of a Portuguese caravel
1565
The Spanish establish the first European colony in what is now the USA. The first English colony is founded 20 years later in Roanoke.

1756-63
The Seven Years War sees Britain become the world's largest colonial empire, gaining America and India in the global conflict.

1775-81

The American states win independence from the British after of Independence.

1810-26
Revolution in South America leads to most colonies freeing themselves
from European rule

1858-1947

British rule is imposed
on India after the Indian rebellion of 1857 against the British East India Company.

1880-1914

European powers seek territory in Africa, invading and colonizing the continent in a "scramble for Africa".

- 1945

By the end of the World
War II, the empires of Italy, Germany, and Japan collapse.

1947
The British make the first move to end colonialism by granting India independence
Mahatma Gandhi.

1956

Disagreement over ownership of the Suez Canal in Egypt leads to the Suez Crisis Britain and France lose their influence around the world.

1963

Independent African countries set up of African Unity to promote their to promote ther economic, political, and cultural interests.

Statue of Mahatma Gandhi

1
BRITI 33.7 million sq km (13 million sq miles) in 1922.

2 SPANISH EMPIRE 19.4 million sa km 17.5 million sq miles) in 1740 .

3
FRENCH EMPIRE
12.9 million sq km (5 million
sq miles) in 1938

4

PORTUGUESE EMPIRE
10.4 million sa km (4 million
sq miles) in 1821.
ITALIAN EMPIRE
3.6 million sa km [1.4 million
sq miles) in 1942.

European empires

AT ITS PEAK, THE
BRITISH EMPIRE COVERED
ONE-QUARTER OF THE WORLD'S LAND AREA

As European explorers sailed around the world in the 16th century, they claimed "new" colonies for their home countries. Nations built empires overseas and many became rich. However, the native people in these new empires were often treated very poorly.

WHY BUILD

AN EMPIRE?

Many European powers considered themselves to be superior to the rest of the world and thought they were the best people to govern, develop, and civilize other nations.

EXPLORATION People wanted to find trade routes.

ECONOMY There was a demand for new materials and new markets around the world.

BIGGEST EMPIRES
At their peak, some empires covered millions of square kilometres of land across the globe.

TRADE

As Europeans claimed territories, they took advantage of the local resources, such as gold and spices, and traded them in markets around the world for profit.

GOLD
The Americas

COFFEE
The Americas

SLAVERY
Between 1500 and 1880, up to 12 million Africans were kidnapped from their homes and sold in the Americas as slaves. They were transported in slave ships and many died of disease and lack of food or water.

THE VIGILANTE
$\begin{array}{lr}\text { This slave ship was found } & \text { People were } \\ \text { to be carrying } 345 \text { people } & \text { chained together to } \\ \text { in } 1822 . & \text { prevent rebellion }\end{array}$

British monarchs

The history of England, and later Britain, is tied together by a string of kings and queens. Early on, royals could start wars, break from the Church, and punish the country's leaders. Today, the Queen has little power but upholds long and popular traditions.

757-1066

ANGLO-SAXONS

After the Romans left Britain in the 5th century CE , the land was attacked by invaders and split into warring kingdoms. The leader of one, Egbert, became the first king of England. Throughout the Saxon period, powerful kings fended off Viking raids, but England was ruled by Viking monarchs for over 25 years.

757-96	OFFA	955-59	EADWIG	
802-39	EGBERT	959-75	EDGAR	
839-56	aEthelwulf	975-78	EDWARD II "THE MARTYR"	
856-60	AETHELBALD	979-1013 A	ND 1014-16 AETHELRED \\|"THE UNREADY"	
860-66	AETHELBERT	1013-14	SVEIN	
866-71	AETHELRED I	1016	EDMUND II "IRONSIDE"	
871-99	ALFRED "THE GREAT"	1016-35	CANUTE	
899-924	EDWARD "THE ELDER"	1035-40	HAROLD I "HAREFOOT"	
925-40	ATHELSTAN	1040-42	hardicanute	
940-46	EDMUNDI	1042-66	EDWARD III "THE CONFESSOR"	
946-55	EADRED	1066	HAROLD II	

EGBERT
802-39
Originally King of Wessex, Egbert gradually increased the power and influence of his kingdom. His authority was recognized throughou most of England after he defeated Mercia and Northumbria.

1461-85

YORKISTS

This branch of the House of Plantagenets had a strong claim to the throne. After Richard of York was killed in the Battle of Wakefield (1460), his son Edward became the first Yorkist king. William Caxton invented the first printing press in this period.

$1399-1413$	HENRY IV
$1413-22$	HENRY V
$1422-61$	HENRY VI
$1470-71$	HENRY VI

HENRY VI 1422-61 AND 1470-71 After losing his father's gains in France, a failing mind cost forry

STUARTS

This dynasty was dominated by political battles between King and Parliament, which ended with a civil war and a beheading. Although the Stuarts believed they had a god-given right to rule, they were tolerant of Catholics, and made peace with Spain. They were patrons of the arts and left a legacy of beautiful art and architecture.

JAMES
Scotland and England were united when this Scottish king took the throne. He ruled for long periods without Parliament and was the target of Guy
Fawkes's failed Gunpowder Plot
 This stubborn king believed in his divine right to rule and stamped on any opposition. Defeated by Oliver Cromwell in
the Civil War, he was tried and the Civil War, he was tried and
executed by his parliament.

COMMONWEALTH

For the first and only time in its history, England was a Commonwealth (or republic) without a king or queen. Ruled by puritan Oliver Cromwell and his Parliament, the country took Jamaica from the Spanish and defeated the Dutch at sea.

1649-53 REPUBLIC

 OLIVER CROMWELL (LORD PROTECTOR) RICHARD CROMWELL (LORD PROTECTOR)

OLIVER CROMWELL (LORD PROTECTOR) 1653-58
After Charles I was executed, this leading general established his own council of 15 and a parliament of 400 . He was followed by

1660-1714
STUARTS
After Charles II was restored to the throne London suffered two disasters - a plague killed more than 100,000 people and a great fire destroyed most of the city. James II tried to restore the Catholic faith but fled when William of Orange was invited to restore rights in the Glorious Revolution.

HANOVERIANS

The Hanoverian dynasty saw many changes. Robert Walpole became the first Prime Minister to Germanspeaking George I, and Britain developed into an industrial society By the end of Queen Victoria's reign, Britain's economic power was being challenged by other nations such as Germany and the United States

1066-1154
NORMANS
Originally Vikings who had settled in northwest France, the Normans were hungry for new land. William the Conqueror claimed the throne after he defeated Harold II at the Battle of Hastings. The Normans built castles and brought with them a feudal system of lords, who held land, and peasants, who worked it.

1066-87 WILLIAM "THE CONQUEROR"
1087-1100 WILLIAM II
1100-35 HENRY I

1066
Harold II was appointed by his brother-in-law Edward the Confessor but his reign was short-lived. He died after being shot in the eye in the Battle of Hastings, and William I took the throne.

1135-54
\square

WILLIAM "THE CONQUEROR" 1066-87 Called "The Conqueror" because he conquered England, William was crowned king on Christmas Day 1066. He built the Tower of London and ordered a survey of land and people called the Domesday Book.

1154-1399

LANCASTRIANS

These three kings reigned through almost continual warfare. French territory was recaptured and then lost, and in the War of the Roses, the royal houses of Lancaster and York fought over the throne for 30 years.

HENRY V
Henry V reclaimed lost territories in France when he defeated the French at the Battle of Agincourt, losing only 400 English lives 400 English lives.

HENRY IV
1399-1413
Returning from exile in France, Henry IV reclaimed the throne from Richard II. His reign was marked by many rebellions and revolts.

After prowing 1216-72 with his barons civil wars was defeated by their leader de Montfort, who formed a parliament of lords, bishops, knights, and freemen.

EDWARD I "LONGSHAN 1272-1307
This warrior king fought many battles to unite England and Scotland. A model parliament was formed during his reign.
Originating in Anjou, France, this dynasty took its name from a yellow flower IPlanta genista) an ancestor wore in his hat. During much of their rule, England was at war with France and Scotland, and Wales and Ireland came under English rule. The Plantagenets laid the foundation for law and government by creating justices of the peace and the first parliament. They put the royal seal on a charter of rights called the Magna Carta.
JOHN I
1199-1216

RICHARD I THE LIONHEART" 1189-99 This crusading king spent most of his reign fighting for Christianity in the Holy Lands. Imprisoned by the Emperor of Germany, he was returned for a huge ransom and was eventually killed in France.

WILLIAM IV
Many more people got the vote under William IV, and slavery was abolished throughout the British Empire.

GEORGE II
GEORGE II
$1760-1820$

The Americans won independence and England fought France in

VICTORIA
1837-1901
This much-loved queen ruled for 64 years. After her husband Prince Albert died, she went into mourning but was coaxed back to public life.

1901-10
SAXE-COBURG-GOTHA
This dynasty of just one king is named after Queen Victoria's husband Prince Albert, who was the son of the Duke of Saxe-Coburg and Gotha. Edward became king at the age of 59 and reigned during the first years of the 20th century, when new inventions like the first automobile were taking Britain into the modern age.

EDWARD VII 1901-10 Edward was a social king who enjoyed sports, parties, and travel He helped restore relations between rance and England and built a new
royal estate in royal estate in
Sandringham Sandringham
Norfolk.

1910-

WINDSORS

George V changed his surname to Windsor during the World War I because of the strong antiGerman feelings of his people. After Edward VIII gave up the throne to marry a divorced woman in 1936, his younger brother George VI was King through World War II. Queen Elizabeth II has reigned for more than 60 years.

GEORGE V
1936-52
George VI was a good athlete and soldier, but this shy man with a stammer had not expected to be king He managed to overcome his speech impediment and his speech impediment and
became popular during and after the war

ELIZABETH II
1952-
The current queen remains head of the Commonwealth (former colonies) and is popular around the world. Prince William and Catherine Duchess of Cambridge, and their children lead a new generation of royals.

The Industrial Revolution

In mid-18th-century Britain, a surge in new technology and inventions meant that fewer people were needed to farm the land. People moved from the countryside to towns, to work in the newly built mills and factories. This change in the economy, from farming to manufacturing, is known as the Industrial Revolution.

COAL AND IRON

For thousands of years, iron had been made by using charcoal from timber. But in 1709 Englishman Abraham Darby and his son developed a way of making iron using coal. Coal was easier to obtain than wood, so this discovery led to a huge growth in the production of iron to make tools and machinery, and to the opening of more mines to provide the coal.

IRONBRIDGE, SHROPSHIRE
Site of the world's first iron bridge, built by Darby's grandson in 1781.

THE FACTORY AGE

Traditional industries such as cotton and textiles were transformed by the Industrial Revolution. Machines were developed that could make raw cotton into thread in a fraction of the time it had taken craft workers in the past. At first, the machines were powered by water, so mills and factories were built next to rivers. When steam replaced water power, the factories moved into towns

THE NEW SPINNING MACHINES
PRODUCED COTTON 1,000
TIMES FASTER THAN A
HUMAN WORKER COULD
Spinning frames

REGULATIONS Factory life was harsh. Workers could be fined just for whistling, or
being five minutes late

NSIDE A COTTON MILL

Flowing water turned the wheel to power the machines

WORK CONDITIONS

Factory workers worked more than 12 hours a day, six days a week. At the start of the Industrial Revolution there were no laws to protect the health or safety of workers. Factories were hot and deafeningly noisy, and accidents and injuries were very common.
\qquad underground in coal mines, pulling heavy

RISE OF THE NEW TOWNS

As more and more factories were built, towns grew and housing, schools, and shops were built near to where people worked. Small towns quickly became large, factory-dominated cities, which attracted even more people in search of work.

THE MOVE FROM
COUNTRYSIDE TO TOWN IN THE UK

K population: 5.5 million UK population: 41.6 million

FARM

TECHNOLOGY

As the population grew, there was an increased demand for more food and more efficient, cheaper ways of growing it. Steam-powered ploughs and threshing machines appeared in the 1820s, then in 1831, American Cyrus McCormick invented a mechanical grain harvester.

STEAM THRESHING MACHINE

INDUSTRIAL PIONEERS

The Industrial Revolution was driven by engineers and inventors, many of whose ideas paved the way for the age of high technology in the 20th century.

O RICHARD ARKWRIGHT (1732-92) Invented the water frame for spinning thread or yarn, then set up the first water-powered cotton mill in England.

RICHARD TREVITHICK (1771-1833)
In 1804 Trevithick designed and built the world's first steam railway locomotive

ELI WHITNEY

(1765-1825)
American who invented a machine called the cotton gin, which revolutionized the cotton industry in America.

SIR HUMPHREY DAVY (1778-1829)

English chemist and inventor. He developed the Davy lamp, a light to help miners detect dangerous gases underground.

ISAMBARD KINGDOM

BRUNEL (1806-59)
An engineer who built bridges, tunnels, railways, and the world's biggest ship a the time, the Great Eastern

RICHARD TREVITHICK

TIMELINE

OF A REVOLUTION

The invention of steam power was a turning
point in history. It also sparked major
developments in other areas, including communications, transport, and construction.

1771
Richard Arkwright builds the first water-powered cotton mill.

Replica of the Watt steam engine 1805
Engineer Thomas Telford completes the Pontcysyllte Aqueduct,
the longest and highest in Britain.
 steamboat, Savannah, launches in America.

Sir Humphry Davy invents a lamp Davy safe to use that is safe to use in gas-

The first 1837 The first electric device the five-needle device, the five-needte

The electric telegraph invented by William Cooke and Charles Wheatstone
$1855=$ Englishman Henry Bessemer invents a machine to make steel cheaply.

1712
Thomas Newcomen builds the first steam powered engine.

1764
James Hargreaves
invents the spinning jenny, a machine for spinning yarn

1798
Gas lighting is
introduced in factories, throughout the night

1800

Italian Alessandro Volta invents the battery. battery.

1825

The Stockton and
Darlington Railway opens, the world's first public steam railway.
 camera

World War I

In 1914 tensions that had been simmering in Europe came to a head. War broke out and quickly spread across the world. Fought between two powerful groups of countries (the Allies and the Central Powers), it was the biggest war the world had ever seen.

CASUALTIES

OF WAR

The cost of the war in human lives was enormous. More than 30 million men were killed or injured, and some battles were so devastating that thousands died in a single day.

AMBULANCE CART

	88878885 21 FEBRUARY - 18 DECEMBER 1916	
Battl of the Somme	Battl of Verdun	Third Battle of Ypre (Passchendaele)
1,219,201	976,000	848,614

TOTAL CASUALTIES FROM THE BLOODIEST BATTLES OF WWI

TRENCHES

Both sides built long trenches as a defence against longrange weapons. Soon, there was stalemate, with neither side able to advance into the other's territory. Life in the trenches was hard. Soldiers fought, ate, and slept there, sometimes for weeks on end.

TAKING SIDES

By the end of 1914, almost all of Europe had taken sides in the war. Only a few countries remained neutral.
allied nations central powers

A CONTINENT AT WAR

The two main European
arenas of the war were the Western Front, France, and the Eastern Front, which was mainly in Russia.

KEY

THE COURSE OF

 THE WARAt the beginning of the war, the Germans' progress seemed unstoppable, until a harsh winter and fierce resistance halted them in Russia. When the USA joined the war at the end of 1941, the tide turned. The Allies won victories in North Africa and the Pacific, then, in 1944, they landed in France and began to take back Europe

World War II

In September 1939 Germany, led by dictator Adolf Hitler, invaded Poland and triggered World War II, the deadliest conflict in history. By the end of the war six years later, around 60 million people had been killed, more than half of them civilians. A large part of Europe was in ruins, and two Japanese cities had been obliterated by nuclear bombs.

THEATRES OF WAR

For the first two years of the war, fighting raged across Western Europe, on the Eastern Front in Russia, and in North Africa. By the end of 1941, when the USA and Japan joined in, the conflict had spread to the Pacific and Southeast Asia. Few nations were able to stay neutral as war engulfed the whole world.

The Cold War

After World War II, the USA and the Soviet Union (USSR) emerged as the world's most powerful countries. Although bitter enemies, the threat of nuclear destruction stopped them from declaring war. Instead, they each tried to weaken the other by spying, supporting other countries in conflicts, and developing new technologies.

THE WORLD DIVIDED

As tensions grew between the two superpowers, they each tried to form alliances with other countries. By the mid-1950s, all of Europe and most of the world had chosen sides in the Cold War.

NATO
The North Atlantic Treaty Organization, an alliance of 12 Western democratic countries, formed in 1949.

CANADA

ICELAND

WARSAW PACT
Formed by the USSR in 1955, in opposition to NATO.

ALBANIA
Left 1962

 Other USA allies

NATO LEADERS

In 1949 the USA brought
together a group of countries to form a military union. NATO's aims were to stop the spread of Communism and help prevent future war in Europe. As the USA was the most powerful country in NATO, the US president was seen as its leader.

DWIGHT D EISENHOWER Became US president in 1953. He promised help to countries who were under threat from the spread of Communism.

JOHN F KENNEDY When Kennedy confronted the USSR in 1962 over weapons they held in Cuba, many feared that it would trigger a third world war.

RICHARD NIXON Nixon started a slight thaw in the Cold War when he met the Soviet leader Leonid Brezhnev in 1972, to discuss reducing weapons.

RONALD REAGAN The US president in charge at the end of the Cold War, Reagan signed a peace treaty in 1989 with Soviet leader Mikhail Gorbachev.

WARSAW

 PACT LEADERSThe Pact was an antiNATO alliance between Communist nations. Communism was based on the belief that property should not be owned by individuals, but shared by everyone.

JOSEPH STALIN Set the Cold War in motion by bringing much of Eastern Europe under Soviet control after World War II.

NIKITA KHRUSHCHEV Tried to establish better relations with the USA, but was ousted as Soviet leader by rivals in 1964

FIDEL CASTRO
Led a Communist revolution in Cuba in 1959. The USA supported many attempts to remove him from power

NUCLEAR ARMS

After World War II, only the United States had nuclear bomb technology, but in 1949 the USSR successfully tested a nuclear device of its own. The nuclear arms race began, with both countries building more and more powerful weapons and
stockpiling thousands of warheads.
NUCLEAR WEAPON STOCKPILES, 1950-2010 틀 USA
USSR, then Russia after 1991

PGM-11 REDSTONE (USA) First missile to carry

R-7 SEMYORKA (USSR) First intercontinental a live nuclear warhead.

THE BERLIN WALL

After World War II, Germany's capital was divided up between the Allied countries - UK, USA, France, and USSR. In 1961 the Soviets built a $2 \mathrm{~m}(6.5 \mathrm{ft})$ high wall enclosing the three sectors of West Berlin to stop people escaping from the Communist Soviet sector to the Allied sector. The heavily guarded wall was finally demolished in 1989, at the end of the Cold War

THE ENEMY AT HOME AND ABROAD
Espionage (spying) was an important Cold War tactic. Both sides developed military reconnaissance spy planes and anti-spy planes to counter the other's surveillance planes. They also deployed secret agents, whose job was either to uncover political and industrial information about the enemy, or to seek out spies and traitors in their own country.

LOGO OF THE CIA, USA'S COUNTERINTELLIGENCE FORCE

LOGO OF THE KGB,
SOVIET SPY AGENCY

SPACE RACE

Both the USA and USSR desperately wanted to be world leaders in space exploration. They each poured huge amounts of money and resources into the race to be the first to land a man on the Moon.
FIRST SATELLITE TO
ORBIT EARTH: USSR
On 4 October 1957, the Soviets launched Sputnik I. The USA launched their first satellite Explorer 1 four months later.

FIRST MAN

IN SPACE: USSR
On 12 April 1961, Yuri Gagarin was the first
man to orbit the Earth in man to orbit the Earth in
his spacecraft, Vostok I.

FIRST WOMAN
IN SPACE: USSR
Valentina Tereshkova
became the first female became the first female
cosmonaut when she flew Vostok 6 in 1963.
It took the USA another 20 years to send Sally Ride up in the space shuttle Challenger.

FIRST "SPACE WALK": USSR

On 18 March 1965, Alexei Leonov spent about ten minutes floating outside his spacecraft, Voskhod 2. The Americans lost out again, by just three months.

FIRST PERSON

 TO LAND ON THE MOON: USA On 20 July 1969, Neil Armstrong, Commander of the Apollo 11 moonmission, stepped out of mission, stepped out of the lunar landing module, Eagle, and on to the surface of the Moon.

COMMEMORATIVE STAMP SHOWING YURI GAGARIN

VIETNAM WAR

In 1954 Vietnam was split when the
Communists (Vietcong) in the North split from the South. The USA sent troops to help the South Vietnamese, leading to a 20-year war, which ended in victory for the Vietcong.

COLD WAR STORY
The Cold War divided Europe between democratic west and Communist east, and spread worldwide as both sides tried to undermine each other by influencing global events.

- MARCH 1946

British ex-prime minister Winston Churchill describes the division between Communist and nonCommunist countries as an iron curtain

- JUNE 1948

The Soviets try to squeeze the other Allies out of Berlin
by blockading the city, forcing the Allies to airlift in supplies.
MAY-OCTOBER 1949 -
Communist East Germany and capitalist West Germany are founded.

JUNE 1950 The Korean War
egins; USSR and USA take opposing sides

OCTOBER 1956 The USSR invades Hungary to put down an anti-Communist uprising.

AUGUST 1961 -
Soviets build the Berlin Wall.

MAY 1972 =-
USA and USSR sign a treaty agreeing to limit their nuclear weapons.

DECEMBER 1987

Book by Mao Zedong, Chines leader Statue of
Che Guevara,
one of Cuba's
leaders at the
time of the
Missile Crisis USA and USSR face off in the Cuban Missile Crisis.

MARCH 1965

USA sends 200,000
troops to fight in Vietnam

- JULY-AUGUST 1980
USA boycotts the Moscow
Olympic Games in protest
at the Soviet invasion
of Afghanistan.
NOVEMBER 1989
Berlin Wall is torn down.
Berlin Wall
memorial

GLOBAL FLASHPOINTS

The effects of the Cold War were felt all over the world, as the USA and USSR backed different sides in various conflicts and uprisings.

KOREA 1950-53 The USA and United Nations backed South Korea, while USSR and China supported the

Commusts intherth

NICARAGUA 1979
When Sandinista revolutionaries overthrew the government, the USA funded a guerrilla war
against the new regime.

CZECHOSLOVAKIA 1968 An attempted uprising against the Communist regime was violently put down by the USSR. The West

AFGHANISTAN 1979 When the Soviets invaded Afghanistan, Afghan resistance fighters (Mujahideen) were secretly
armed and funded by the USA.

Spies

Spying, or espionage, is all about finding out secret information, known as "intelligence". Spies have been operating for thousands of years. In ancient times, they sneaked into enemy camps to uncover their battle plans. If they were caught, they were killed. Spying is still a dangerous business. Secret agents carry weapons as well as the latest surveillance gadgets.

CAMERAS

Used to photograph top-secret plans or provide evidence of a private meeting, the camera is an essential part of a spy's kit. These days, a secret agent can use a smartphone to take a snap without attracting attention. In the past, cameras had to be ingeniously concealed inside everyday objects.

MICRODOT CAMERA

DCD-1 (CIA SUBMINIATURE CAMERA)

FAMOUS SPIES
Successful spies rarely become famous, because their cover is never blown. A handful of spies do find fame as heroes, or after being found guilty of espionage.

O JOHN ANDRE

This British army officer was hanged as a spy in 1780 during the American War of Independence.

O JAMES ARMISTEAD LAFAYETTE

A former African slave, Lafayette was a double agent in the War of Independence.

O MATA HARI

Dutch dancer Mata Hari was executed for spying for Germany in World War I (1914-18).
O VIRGINIA HALL
After helping the British in World War II (1939-45), this US spy joined the CIA.

THE ROSENBERGS

 This American husband and wife were executed in 1953 for passing sSoviet Union.
 MOLLY (CIA SUBMINIATURE CAMERA)

THE FICTIONAL SPY JAMES BOND WAS CREATED BY IAN FLEMING IN 1953

RADIOS

Radio allowed secret agents of the past to communicate quickly over long distances - they did so in code, because radio messages can be easily intercepted. Radio waves also transmitted sounds from listening devices, such as the one hidden in the hotel lamp below.

RADIO WRISTWATCH KGB

RECORDING
 DEVICES

With the help of bugs and other secret recording devices, spies can ensure that no conversation is ever private. Wiretaps allow an agent to listen in on phone conversations.

CIA WRISTWATCH MICROPHONE

MEZON RECORDING DEVICE

PEN-TOP MICROPHONE

CODES AND CIPHERS

Keeping communications secret and intercepting enemy messages were prime concerns during World War I and II. Codes allow words or instructions to be replaced by letters, numbers, or symbols. Ciphers are a clever kind of code, where a secret "key" encrypts the message.

WHO SPIES?

Most spies work for someone else - usually a government, a company, or another person Spying is their job. It involves finding out information that others would rather keep hidden, and passing those secrets on.

...AND WHY?

Spying is a risky business, so why do people do it? They are usually motivated by one of four reasons. Experts explain these using the term "MICE", which stands for Money, Ideology, Compromise, and Ego.

governments Every government runs its own intelligence agency. The agency employs spies to gather information.

PRIVATE COMPANIES Private intelligence agencies spy on behalf of individuals, companies, and governments.

POLITICAL GROUPS ampaigners may work to find out dirty" secrets kept by big companies or the government.

INDIVIDUALS ome people spy without being hired They may discover a secret and share it.

MONEY
Most spies do what they do for the money. Top spies are paid huge sums for the secrets they uncover.

IDEOLOGY
Some spy because of beliefs, or ideology. They work for a government or organization that shares their beliefs.

COMPROMISE Sometimes people fall into spying because they have a ecret of their own. They are blackmailed into the job.

EGO
A small number of spies are motivated by ego. They think being a spy will be glamorous.

CYBER SPIES

Computers and the Internet have changed the face of espionage. Cyber sleuths can now steal information remotely, by hacking into computers. Governments and companies take cyber espionage very seriously.

INTELLIGENCE AGENCIES

Governments need spies to tell them about threats from other countries. Some also carry out surveillance on their own citizens.

MSS, CHINA
In 1983 China merged existing agencies to make its Ministry of State Security (MSS).

- RAW, INDIA

Created in 1968, India's Research and Analysis Wing (RAW) reports directly to the Prime Minister, not Parliament.

- CIA, USA

The Central Intelligence
Agency (CIA) focuses on foreign threats to the USA.

O ISI, PAKISTAN

Founded in 1948, InterServices Intelligence (ISI) collects information that affects Pakistani security.

O FSB, RUSSIA

The Federal Security Service (FSB) was formed in 1995. It took over from the KGB after信
BND, GERMANY
Germany's Federal
Intelligence Service, or Bundesnachrichtendienst. was founded in 1956

O DGSE, FRANCE

Formed in 1982, the Direction Générale de la Sécurité Extérieure (DGSE) investigates threats to France.

GENERAL TOOLS

One challenge spies face is gaining entry to places where secrets are stored. Secret agents carry kit for breaking and entering, including fence cutters, key copiers, and lock picks.

LOCK PICK GUN

KEY PATTERN DEVICE

COVERT ENTRY KIT

Index

A
Aamodt, Kjetil Andre 262
aardvarks 146
Abdülmecid I, Sultan 300
Aboriginal culture 192
abyssal zone, ocean 152
Abyssinian cats 137
acacia trees 146, 147
accordions 211
acid rain 176
acids 29
Acropolis (Athens) 189
acute angles 48
Adams, John 318
Adams, John Quincy 319
adaptable plants 80
adaptation 33
adders 111
addition 46
The Adventures of Tom Sawyer
(Twain) 220
adzes 186
aeroplanes 44
Afghan hounds 135
Afghanistan 333
flag 197
Africa 190-1
early man 284
European empires 322
flags 196
food 224
population 180, 190
savanna 146
size 178
slavery 323
African wild ass 139
African Americans, soldiers
in US Civil War 321
agoutis 124
agriculture see farming
Ahmet Fountain (Istanbul) 301
air pressure 175
Aira Caldera (Japan)
161
Airbus 38063
aircraft 60-3
Cold War 333
World War I 328-9
World War II 330
airships 63
Akbar, Emperor 302
Akhenaten 288
Akkad 286
Alaska, earthquake 162
Albania, flag 197
albatrosses 150-1
Albertosaurus 77
The Alchemist (Coelho) 221
Alcock, John 63
alders 85
Alexander the Great 291
Alfred the Great 309, 325
algae 69
algebra 47
Algeria 190
flag 196
Alhambra Palace (Spain) 219
alkali metals 31
alkaline earth metals 31
Allied Powers 330
alligators 112-13
Allosaurus 76, 77
alloys 28
alpacas 141, 187
alphabet, runic 296
alpine skiing 262
amaryllis 81
Amazon rainforest 145, 187
Amazon River 186, 187
amber 72, 169
ambulances 55, 328
Amenhotep III 288
American football 247, 250-1
American Revolution 317
Americas, Ancient
ammonites 70-1, 72-3
amnesia 41
Amphibamus 71
amphibians 104-5
frogs and toads 104-5
prehistoric 78, 79
rainforest 144-5
savanna 147
skeletons 132
tree of life 68
Amundsen, Roald 194, 314
anacondas 111, 145, 187
anatomy see bodies
Anchisaurus 74
ancient monuments 285
Andalucian horses 138
Andes Mountains 186, 187
Andorra, flag 197
André, John 334
anemonefish 98
anemones 83, 143, 153
Angel, Chriss 279
Angel Falls (Venezuela) 186
angelfish 98, 153, 155
Angkor Wat (Cambodia) 183, 219
anglerfish 153
angles 48
angling 270-1
Anglo Saxons 324-5
Angola, flag 196
Animal Farm (Orwell) 220
animals
biology 33
coral reefs 154-5
deserts 148-9
endangered 177
farm 140-1
forests 142-3
how life began 70-1
life on Earth 159
migration 122-3
Oceania 193
oceans 152-3
polar regions 150-1
prehistoric 78-9
rainforest 144-5
relationships 153
savanna 146-7
tree of life 68-9
see also dinosaurs
Ankylosaurus 75
Anne of Green Gables (Montgomery) 220
anole lizards 109
Anomalocaris 78
anostomus 99
Antarctic Treaty 195

Antarctica 194-5
population 195
size 178
wildlife 150-1
anteaters 68, 145, 147
antennae
butterflies and moths 94
crustaceans 90
anthocyanins 228
antibiotics 45
Antigua and Barbuda, flag 196
Antonov AN-225 63
ants 93, 143, 149
Anurognathus 78
Apatosaurus 74
apes 126-7
Apollo spacecraft 15, 16, 17, 314, 333
Appaloosa horses 138
Apple Flower Festival (Denmark) 205
apples 199
aquamarine 169
aquatic snails 97
aqueducts, Roman 295
Arab Spring 317
Arabian horses 138
Arabian Nights 221
Arabic 206
arachnids 88-9
archaea 69, 159
Archelon 70
archer fish 98
arches, formation of 165
Archimedes 291
architecture see buildings
$\operatorname{arcs} 48$
Arctic char 99
Arctic Ocean 153, 171
Arctic poppies 151
Arctic terns 122, 123, 151
Arctic wildlife 150
Arctic willow 151
Ardennais horses 138
area
Africa 190
Antarctica 195
Asia 183
Earth's surface 178
Europe 188
geometry 48, 49

North America 184
Oceania 193
South America 186
Argentavis 78
Argentina 187
bread 232
flag 196
football 248
Argentinosaurus 74
Aristarchus 18
Aristotle 18, 33, 223, 291
Arkwright, Richard 327
armadillos 68
Armenia, flag 197
arms and armour
Ancient Greece 291
Ancient Rome 294
Aztec 299
early civilizations 287
medieval Europe 308-9
Mughal 302
Ottoman 301
Renaissance 312
Samurai warriors 305
siege weapons 311
spies 335
US Civil War 320-1
Viking 297
World War I 329
World War II 330-1
Armstrong, Neil 16, 314, 333
army, Roman 294
arrowheads 80
art and crafts
Ancient Americas 299
Ancient Greece 290
early civilizations 287
early human 285
Imperial China 306, 307
Imperial Japan 305
Mughal Empire 303
Ottoman 301
Renaissance 313
the story of art 208-9
Viking 296-7
Artemis 293
arthropods 68
Arthur, Chester A. 318
ash trees 85

Asia 182-3
flags 197
food 225
population 180, 183
size 178
Asian cats 137
ASIS (Australia) 335
aspens 85, 143
asphodels 82
ass, African wild 148
Asteroid Belt, missions to 16
asteroids 11, 14
Aston Martin 51
Astraspis 71, 78
astrolabes 312, 315
astronomy 18-19
Mughal 302
Northern skies 20-1
Southern skies 22-3
Atacama Desert 187
Athens (Greece) 189, 290
athletics 260-1
Atlantic Ocean 153, 171
atmosphere, Earth's 158, 159
atmospheric circulation 172-3 atolls 154
atomic bombs 330, 331
atomic numbers 30
atoms 25,28
aubergines 199
Aucasaurus 76
Augean Stables 293
August Revolution (Vietnam) 316
Augustine of Hippo 223
auks 117, 151
Aurangzeb, Emperor 302
aurorae 19, 26
Australia 192-3
area 193
flag 197
food 225
meat 238
population 193
Australian Rules football 247
Australopithecus afarensis 284
Austria
cheese 230
flag 197
Austria-Hungary, World War I 328
averages 47
avocets 117
axial tilt, Earth's 150, 178
Axis Powers 330
Azerbaijan, flag 197

B

Babbage, Charles 43
baboons 127
Babur, Emperor 302
Babylon 286
backgammon 276, 277
bacon 238
bacteria 70, 159
tree of life 69
badgers 133, 142
badminton 257
bagels 233
Baháíí 203
Bahamas, flag 196
Bahrain, flag 197
balalaikas 211
bald eagles 116, 118, 150
baleen whales 130
Balinese-Javanese cats 137
ball lightning 175
ball sports 246-7
water-based 266
ballet 214, 216-17
ballistas 311
balloons, hot-air 62
ballroom dancing 215
balls 246, 247
football 248
racket sports 256-7
bananas 199
bandfish 98
bandros 127
bandy 247
Bangladesh, flag 197
baobab trees 147
Barapasaurus 75
Barbados, flag 196
barbets 176
Barents, William 315
bark 84
barley 198
barn owls 119, 142
Baronyx 73, 76, 77
Baroque art 208
barracudas 155
barrier reefs 154
baseball 247, 252-3
basenjis 134
bases 29
Bashkir ponies 139
basketball 246, 254-5
bass clef 212
basset hounds 135
bassoons 210
Bastille (Paris) 317
bateleurs 118
baths, Roman 295
bats 133, 143, 145
batteries 26, 187
battleships 329
bayonets 320, 329
beach volleyball 246
beaches 164
beagles 135
beaked whales 131
beaks 116, 117
birds of prey 118
beans 198
bears 143, 151, 184
Beaufort scale 173
beavers 125
Bedlington terriers 134
bee orchids 83
beech trees 85,143
beef 238
Argentine 187
Beehive Cluster 20
beekeeping 141
bees 93
beetles 92, 133, 143, 147, 149
Belarus, flag 197
Belgium, flag 197
Belize, flag 196
Bell, Alexander Graham 327
Belle Epoque, fashion 243
Bellerophon 293
belly dancing 215
beluga whales 131, 151
Bengal cats 136
Benin, flag 196
Bentley cars 50
Beowulf 221
Berlin Airlift 333
Berlin Wall 317, 332
berries 226
Bhutan, flag 197
biathlons 263

Bichon Frise 135
Bichon Yorkies 135
bicycles 64-5
Big Bang 10-11
Bikaner Camel Festival
(India) 204
billy dogs 135
binary code 42
biodiversity 142
biofuels 177
biology 32-3
birch trees 85
bird-of-paradise plant 81
birds 116-17
adaptation 33
desert 149
eggs 114-15
feathers 116, 120-1
flight 116, 121
forests 142-3
migration 122, 123
polar regions 150-1
prehistoric 78
rainforest 144-5
savanna 146-7
skeletons 132
spreading seeds 227
Stymphalian 293
tree of life 69
birds of paradise 117, 121, 144
birds of prey 116, 118-19
birdwing butterflies 94, 95
Birman cats 137
birthstones 168
bites, snake 111
bits (tack) 280
black holes 11
black mambas 111
black smokers 153
black widow spiders 88, 89
blackbirds 121, 143
Blaine, David 279
blennies 98
Blériot, Louis 63
the Blitz (London) 331
blood vessels 34
blue cheeses 231
Blue Mosque (Istanbul) 219
blue sharks 100
blue whales 131
bluebells 81, 82, 143
bluebirds 121
bluebottles 93
bluefish 98
BMX bikes 264
BND (Germany) 335
board sports 267
boars 143, 311
Erymanthian 293
boas 110-11, 144
boats 45
anatomy of 268-9
Egyptian 288
bob cats 129
bobsleigh 263
bodies
birds 116
cats 136
chemical composition 30
crocodilians 112
crustaceans 90
dogs 134
fish 98
human 34-41
insects 92
lizards 108
meat-eating dinosaurs 76
plant-eating dinosaurs 74
rodents 124
sharks 100
slugs and snails 97
snakes 110
spiders 88
body systems 35
Body-painting Festival (Austria) 204
Bolívar, Simón 317
Bolivia 186, 187
Bollywood style 214-15
Bolt, Usain 261
Bolton Abbey (England) 308
bombardment 329
bombards 311
Bombay cats 137
Bombay duck 236
bombers 60-1
Bond, James 334
bone marrow 37
bones $34,35,36-7$
bonobos 127
bonsai trees 85
bony fish 99
The Book Thief (Zusak) 221
books 220-1, 312
Booth, John Wilkes 321
boreal evergreen forests 142
Borneo 183
Bosnia \& Herzegovina, flag 197
Boston terriers 134
Botswana, flag 196
Botticelli, Sandro 313
bottlebrush 80
bottlenose dolphins 130
boules 246
bowhead whales 150
bowline 274, 275
bowling 247
bowls 247
boxer crabs 153
boxfish 98, 153
boxing 272
Boyd, Belle 321
Boyle, Robert 29
brachiopods 71
Brahms Crater (Mercury) 12
brain, human 34, 40-1
brain coral 154
brass instruments 210
brassicas 198
Brazil
area and population 181, 186
flag 196
food production 198
football 248
Brazilian Revolution 316
breaching, whales 131
bread 232-3
bridge 277
bridles 280
brioche 233
bristlecone pines 85
Britain see United Kingdom
British Empire 322
British shorthair cats 137
Brittany dogs 134
brittle stars 153
broccoli 199, 228
bromeliads 145
Brown, Arthur 63
Brunei, flag 197
Brunel, Isambard Kingdom 327
Buchanan, James 319
Budapest (Hungary) 189
Buddhism 202, 214, 307
buffaloes 146-7
Bugatti cars 51
bugles 210
bugs, true 92
buildings
castles 310-11
earthquake-proof 163
great 218-19
medieval Europe 308
Mughal 303
Bulgaria, flag 197
bull boxers 135
bull terriers 134
Bullard, Eugene Jacques 63
bulldogs 135
bullet ants 145
bullet trains 57
bullfrogs 147
buntings 151
burbot 99
Burj Khalifa (Dubai) 219
Burkina Faso, flag 196
Burmese cats 137
Burundi, flag 196
Bush, George H.W. 319
Bush, George W. 319
bushbabies 127
bustards 117
buttercups 83
butterflies 93, 94-5, 185
migration 122
rainforest 144-5
butterfly fish 155
butterfly weeds 83
butterwort 81
buzzards 118, 132
Byzantine art 208

C

cabbages 198
cacti 80, 148, 149
caecilians 105
Caesar, Julius 295
caimans 113, 132
Cairn terriers 134
caldera lakes 171
calderas 160, 161
calendar
Chinese 307
Roman 295
calligraphy
Arabic 300
Chinese 306

Calypso 293
Camarasaurus 74
Cambodia 183
flag 197
Cambrian explosion 70
camels 141, 148, 190
cheese 231
cameras, spies 334
Cameroon, flag 196
Camptosaurus 75
Canaan dogs 134
Canada 184
area 181
flag 196
food production 198
meat 238
canals 326
canasta 277
cancan 214
cane toads 105, 147
canoeing 267
canopy, rainforest 144-5
canter 281
Canterbury Cathedral (England) 202
Canute, King 325
Cao Dai 203
Cape Town (South Africa) 191
Cape Verde, flag 196
capuchin monkeys 126
capybaras 144-5, 147
caracals 128, 148
caracaras 119
carbon 31
carbon dioxide 80
Carboniferous Period 71
Carcharodon 71
Carcharodontosaurus 70-1, 77
card games 276-7
card tricks 278, 279
Carnac (France) 285
Carnation Revolution (Portugal) 316
carnival 204-5
carnivores 68, 69
carnivorous plants 81
Carolinas 134
carotenoids 228
carrots 199
cars 44, 50-1
Carter, Jimmy 318
Carthage 295
cartilaginous fish 99
Caspian Sea 171
cassava 198
Cassini spacecraft 17
casting (fishing) 271
castles 310-11
Imperial Japan 304
medieval Europe 308
castor beans 81
Castro, Fidel 316, 332
casualties
US Civil War 320, 321
World War I 328
World War II 331
catalytic converters 51
Caterpillar crawlers 52-3
caterpillars 95
catfish 99
cats 69, 133, 136-7
wild 128-9
cattle 140, 187, 191, 311
cattle ranches 145
Caudipteryx 76
cauliflowers 199
cavalry defence 294
cave spiders 88
caves, formation of 165
caviar 237
cavy-like rodents 124-5
Cayley, George 63
cedars 85, 143
celebrations 204-5
celestial sphere 19
cellos 211
cells 32,34
cement mixers 54
Cenozoic Era 70-1
centaurs 292
centipedes 68
Central African Republic, flag 196 ceramics
Ancient Americas 299
Ancient Greece 209, 290
early civilizations 287
Imperial China 306, 307
Imperial Japan 305
invention of pottery 44
Mughal 303
Ottoman 301
prehistoric 285
ceratopsians 74-5
Ceratosaurus 76
cereals 198
Ceres 19

Cerro Aconcagua (Argentina) 186
cha-cha 215
Chad, flag 196
challah 233
Chama 71
chambered shells 103
Chamberlain, Joshua 321
Chamberlain, Wilt 255
chameleons 109, 132, 144
Chandayaan-1 Spacecraft 17
changement 217
Chantilly Tiffany cats 137
chariots 287
Charlemagne 309
Charles I, King 316, 324
Charles II, King 324
Charlotte's Web (White) 221
chars 99
Chartreux cats 136
Charybdis 293
Château de Beynac (France) 308
Château de Fougères (France) 308
cheese 198, 230-1
cheetahs 129, 146
chemical reactions 29
chemicals, cleaning 176
chemistry 28-9
cherry blossom 183
cherry trees 85
Chesapeake Bay retrievers 134
chess 277
chestnuts 85
Chevrolet cars 50
Chichen Itza (Mexico) 163, 185, 296
chickens 140, 199, 239, 311
chicks 114-15, 117
Chihuahuas 135
Chile
bread 232
earthquake 162
flag 196
pasta 235
chillies 199
Chimaera 292
chimpanzees 127, 133, 144
Chimu people 298
China 182, 183
area 181
art 209
early civilizations 286
flag 197
food production 199

Imperial 306-7
population 183
revolutions 316, 317
space programme 15, 17
chinchillas 125
Chincoteague ponies 139
Chinese chequers 276
Chinese New Year 205
Chinese Revolution 316
chipmunks 125
chipokae 99
chitons 97, 103
chlorophyll 80, 228
chordates 69
chords 48
Chow Chows 134
Christ Church (London) 218
Christianity 202
Christmas 205
chromosomes 32
chromatography 28
chrysalis 95
Churchill, Winston 330, 333
CIA (USA) 333, 335
ciabatta 232
ciambella mandorlata 233
cinder cones 160
ciphers 334
circles 48, 49
circuits 26
circumference 48
Citipati 76
Citroëns 50
citrus fruit 199, 226
city-states
Greek 290
Italian 312
Civil War
English 316
US 320-1
civilizations
Ancient Americas 298-9
Ancient Egypt 288-9
Ancient Greece 290-1
early 286-7
Imperial China 306-7
clams 68, 97, 237
clarinets 210
classical dance 214
classification
biology 33
of life 69
clefs 212
Cleopatra VII 288, 289
Cleveland, Grover 318
climate 172-3
extreme 179
climate change 33, 146, 172, 174
Clinton, Bill 319
clothing
Ancient Greeks 290
Imperial China 307
medieval Europe 308
men's fashions 240-1
motorbike 58
sailing 268
Vikings 296-7
women's fashions 242-3
cloud forest 145
clouds 171, 173
clover 82
clown triggerfish 98, 152, 155
clownfish 99, 153, 155
clubs 329
cluster flowers 82
Clydesdale horses 138
co-ordination 41
coal 326
coastal deserts 148
coastal redwoods 84
coatis 145
coats, horses 139
coats of arms 308
cobra lilies 81
cobras 110, 144, 148
cockatoos 117
feathers 120
cocker spaniels 134-5
cockerpoos 135
cockroaches 71, 72
cocoa 323
cocoa trees 85, 145
coconuts 199
cod 98-9
codes 334
Coelophysis 76
coffee 323
coins
Ancient Greece 290
tricks 278, 279
cold deserts 148
Cold War 332-3
cold waves 174
cold-blooded creatures 110
collies 135
colocolos 128
Colombia, flag 196
Colosseum (Rome) 219, 295
colours 25
vegetables 228
colubrids 110-11
Columbus, Christopher 314, 315
combat sports 272-3
combustion 29
comets 11
Commonwealth (1649-59) 324
communications, US Civil War 321
Comoros, flag 196
companion dogs 135
compasses, magnetic 268,315
composite numbers 47
computers 42-3, 45
condors 118
conductors 27
cones 49
Confederates 320-1
Confucianism 203, 307
Confucius 203, 222
Confuciusornis 70
Congo, flag 196
conifers 69, 80
Connemara ponies 139
conservation 177
wild cats 128
constellations 19, 20-3
constrictors 111
construction vehicles 54
consumers 177
contemporary art 209
continents
Africa 190-1
Antarctica 194-5
Asia 182-3
Europe 188-9
North America 184-5
Oceania 192-3
size of 178
South America 186-7
Cook, Captain James 314
Cooke, William 327
Coolidge, Calvin 319
coordinates 178
coots 117
Copernicus, Nicolaus 18
Coppélia 216
cor anglais 210
coral reefs 154-5, 158, 193
coral snakes 110
corals 71, 72, 153, 169
core
Earth's 158
Moon 14
core fruit 226, 227
corgis 135
cormorants, fishing with 271
corncrakes 117
cornsnakes 110
Cortés, Hernán 299, 315
Corvus constellation 22
Corythosaurus 75
Costa Rica
flag 196
rainforest 185
costumes
ballet 216
dancing 215
Cottee, Kay 269
cotton 323
mills 327
cottongrass 151
countries
biggest and smallest 181
flags 196-7
course plotters 268
court style clothing 240-1 courts
baseball 254
racket sports 256-7
tennis 258
covert feathers 121
cows 140, 199, 311
cheese 231
coyotes 143, 149
crab apples 85
Crab Nebula 20
crabs 90-1, 102, 133, 153, 237
cranes (birds) 117
cranes, truck-mounted 55
craters, lunar 14
crawlers 52-3
crayfish 91, 237
Cretaceous Period 70-1
cribbage 277
cricket 246
crickets 92, 149
crime, medieval Europe 309
crinoids 70
crispbread 232

Croatia, flag 197
crocodiles 68, 112-13, 144, 185
eggs 115
Cromwell, Oliver 316, 324
croquet 247
cross-country skiing 262
crossbills 143
crossbreeds, dogs 135
crotchets 212
crows 132
cruisers, motorbike 58-9
the Crusades 309
crust
Earth 158, 159
Moon 14
crustaceans 90-1
skeletons 133
tree of life 68
Crux constellation 23
Cryolophosaurus 76
Cuba
Cuban Revolution 316
flag 196
cubed numbers 46
cubes 49
Cubism 209
cuboids 49
cuckoos 116
cucumbers 199
culture 200-43
architecture 218-19
art 208-9
celebrations 204-5
dance 214-17
fashion 240-3
food 224-39
language 206-7
literature 220-1
music 210-13
philosophy 222-3
religion 202-3
cuneiform 212
curares 145
Curie, Marie 29
Curiosity rover 17
curlews 121
current, electrical 26
cusk eels 153
cuttlefish 97, 152, 237
Cuzco 298
cyber spies 335
cycads 81

cycling 264-5
see also bicycles
Cyclopes 293
cylinders 49
cymbals 25
cymric cats 137
cypress trees 85
Cyprus
flag 197
meat 238
Czech Republic, flag 197
Czechoslovakia 333

D

da Gama, Vasco 315
dachshunds 135
daddy long-legs 88
daffodils 81
dahlias 81
Daimyo 304
dairy produce 198
daisies 82, 83
Dali, Salvador 209
Dallol (Ethiopia) 179
dalmatians 135
damselflies 93
dance 214-15
ballet 216-17
dandelions 143
dandies 241
dandy horses 65
Danish warmbloods 138
Dante the Great 279
Danube River 189
Daoism 307
dark energy 11
dark matter 11
dark zone, ocean 152-3
Darwin, Charles 33, 315
Davis, Jefferson 321
Davy, Sir Humphry 327
Day of the Dead (Mexico) 205
de Beauvoir, Simone 223
Dead Sea (Israel) 183
deadly nightshade 81
deadly webcap 87
Dean, Christopher 263
deathcap 87
decathlon 261
deciduous trees 85, 142
decimals 47
deer 143, 147
defence
castles 310-11
crabs 90
fish 99
plant-eating dinosaurs 75
tortoises 107
defenders
American football 251
football 248, 249
deforestation 176, 177
Deinonychus 76, 77
Deinotherium 79
Delhi (India) 180
deltas 164
dementia 41
Demeter 293
Democratic Republic of Congo, flag 196
Denali National Park (Alaska) 184
Denmark
bread 232
flag 197
meat 238
deposition 164
dermis 34
Derrida, Jacques 223
dervishes 214
Descartes, René 222
desert cats, Indian 129
desert roses 148
deserts 148-9, 158-9, 176
Devon rex 137
Devonian Period 71
DGSE (France) 335
diameter 48
diamonds 166, 169, 191
The Diary of a Young Girl (Frank) 220
Dicraeosaurus 75
diesel trains 56-7
digestive system 35
diggers 55
digital telescopes 43
Dimetrodon 70-1, 78
Dimorphodon 78
dinosaurs 70-1
extinction 33
fossils 72-3
meat-eating 76-7
plant-eating 74-5
Dior, Christian 242
Diplodocus 74, 75
discus 261
distance events (athletics) 261
Distichodus 99
Ditomopyge 78
diving 266
division 46
Diwali 204-5
Djibouti, flag 196
DNA 34
dobermanns 135
dodgeball 246
dodos 33
dogs 134-5
fishing with 271
Dolmabahçe Palace (Istanbul) 300-1
dolphins 130-1, 152, 154-5
fishing with 271
Dominica, flag 196
Dominican Republic, flag 196
dominoes 276
Don Quixote (Cervantes) 221
donkeys 139, 141
doppler radar 173
dormice 125, 143
Dorudon 131
double basses 211
doves 117, 121
dragonflies 93, 133
Drake, Sir Francis 314
draughts 276, 277
Dream of the Red Chamber (Cao
Xueqin) 221
dressage 281
dresses 242-3
dribbling
basketball 255
football 249
dried fish 236
droughts 174
drums 210, 211
Dry Valleys (Antarctica) 179
Dryosaurus 75
Dubois, W.E.B. 223
Dubreuillosaurus 77
ducks 117, 132, 140, 143, 239
feathers 121
dugongs 68, 152
Dumbbell nebula 20
dumpers 54
dunes 148
dung beetles 147
dunnocks 117

Duomo (Florence) 313
durians 227
dust storms 174
Dutch Revolt 316
dwarf planets 11

E

eagle owls 116, 119
eagles 116, 118, 132, 144
Earhart, Amelia 62
early warning systems
(earthquakes) 163
Earth 11, 13, 158-9
axial tilt 150, 178
how life began 70-1
our physical world 178-9
our political world 180-1
water on 170-1
earthquakes 162-3
detectors 307
earthworms 68
East Timor, flag 197
Easter 205
Eastern Europe, revolutions 317
echidnas 148
echinoderms 71
skeletons 133
tree of life 68
Echmatocrinus 70
economy, and empires 322
Ecuador, flag 196
Edinburgh Festival (Scotland) 204
Edison, Thomas Alva 27
Edmontia 75
Edmontosaurus 75
Edward I ("Longshanks"), King 325
Edward VII, King 325
eels 98-9, 122, 152
Efraasia 74
Egbert 324
egg-laying mammals 68
eggs 114-15
amphibians 104, 105
birds 114-15,
116, 117
butterflies 95
crocodilians 112
fish 237
insects 93
reptiles 115
turtles 107

Egypt, Ancient 286, 288-9
art 209
Book of the Dead 220
trade 314
Egypt, flag 196
Egyptian mau 137
Eid-al-Fitr 204
Eiffel Tower (France) 189
Einstein, Albert 25, 41
Eisenhower, Dwight D. 318, 332
El Greco 208
El Salvador, flag 196
Elasmosaurus 79
electric eels 26
electric trains 57
electricity 26-7
hydroelectric power 171
electromagnetic spectrum 25
electromagnetism 26
electrons 28
elements 30-1
elephants 68, 147, 191
evolution 79
skeleton 132-3
Elizabeth I, Queen 324
Elizabeth II, Queen 325
Elizabethan clothing 241
elms 85
elves 175
Ely, Eugene Burton 63
email 43
embryos 114
emeralds 168
emergency vehicles 55
emergent layer, rainforest 144-5
emotions 41
Empire State Building (New York) 218
emus 146, 193
Encrinus 78
endangered species 177
endocrine system 35
energy
electricity 26-7
for life 32
renewable 177
types of 25
England
English Revolution 316
football 248
monarchs 324-5
English language 206

Enigma machines 334
environment, danger to 176-7

Eocaecilia 70

Eomaia 70
Eoraptor 76
Eothyris 71
Epic of Gilgamesh 220
epidermis 34
Equatorial Guinea, flag 196
equipment
American football 250
baseball 252
basketball 254
fishing 270-1
racket sports 256-7
skiing 262
spies 334-5
tennis 258
US Civil War 320-1
Equus 138
Erasthenes 18
Erik the Red 297
Eriskay ponies 139
Eritrea, flag 196
ermines 150
erosion 164-5
eruption styles, volcanoes 160
Erta Ale (Ethiopia) 160
ESA 15, 17
escapology 279
Eskimo rolls 267
eskrima 272
Estonia, flag 197
Etemenaki Ziggurat (Babylon) 286
Ethiopia
Ethiopian Revolution 316
flag 196
eucalyptus 143
eudicots 83
Eudimorphodon 78
Euoplocephalus 74, 75
Euparkeria 78
Europe 181, 188-9
empires 322-3
flags 197
food 225
medieval 308-9
population 180, 188
Renaissance 312-13
revolutions 316, 317
size 178
space programme 15, 17

European eels 122
European Revolutions 317
even-toed hoofed animals 68
eventing 281
events
cycling 264, 265
sprint 261
Everglades (Florida) 185
evergreen trees 85, 142
Evert, Chris 259
evolution 33
first humans 284
horses 138
prehistoric animals 79
whales 131
wolves and dogs 134
excavators 55
Exmoor ponies 139
exoskeletons 132, 133
exosphere 159
Exotic Shorthair cats 137
exploration 314-15, 322
Expressionism 209
extinction 33,78
eye glasses 45
eyes
birds of prey 118
cats 136
dogs 135
horses 139
human 35
insects 92, 93
sharks 101
snakes 110

F

facial expressions 38
factories 327
falcons 119, 149, 151
family (classification of life) 69
fangtooth 152
fans 305
Faraday, Michael 27
farming
domestic animals 141
early civilizations 286
first humans 285
and habitat loss 145, 146
Industrial Revolution 327
tractors 52-3
year on the farm 52
fashion
men's 240-1
women's 242-3
Fatehpur Sikri (India) 303
fault lakes 171
faults, geological 59, 162
feathers 116, 120-1
Federer, Roger 259
fencing 272, 273
fennec foxes 148
fer-de-lance 110, 111
ferns $69,70,71,81,143$
Ferrari cars 50-1
Ferrel cell 173
fertilizers 52
Festival of the Pig (France) 24
festivals 204-5
Feynman, Richard 25
Fibonacci Sequence 46
fiddler crabs 91
field guns 329
fields
American football 250
baseball 252
FIFA World Cup 249
fig trees 85
figure skating 263
Fiji, flag 197
Fillmore, Millard 318
filtering 28
filters, whales 130
finches 143
fingers 36
Finland
cheese 230
flag 197
fins 98, 100
fire engines 55
firearms 329, 330
The Firebird 216
firefish 154
firs 85
fish 98-101
coral reefs 154-5
eggs 115
as food 236-7
oceans 152-3
polar regions 150
prehistoric 78-9
sharks 100-1
skeletons 132
tree of life 68

fish owls 119
fishing 270-1
fishing cat 128
fjords 189
flags 196-7
prayer 202
flamingoes 121, 185
flatbreads 232
flat fish 237
flavours
bread 232-3
cheese 230
fledglings 117
Fleming, Ian 334
flies 93
flight
aircraft 60-3, 312
birds 116, 121
flightless birds 116
floats (fishing) 271
flooded rainforest 145
flooded savanna 146
floodplains 164
floods 174
Florence (Italy) 313
flowers 82-3
flowering plants 69, 80-1
vegetables 228
Flowers, Thomas 43
flutes 25,210
fly-fishing 271
flying foxes 145
Flying Scotsman 56
flying snakes 111
flying squirrels 124, 125
focaccia 232
fog 174
folding bicycles 65
folk dancing 214
food
Antarctic food web 150
around the world 224-5
bread 232-3
cheese 230-1
fish 236-7
fruit 226-7
horses 280
meat 238-9
pasta 234-5
plants 80
vegetables 228-9
where food comes from 198-9
food web 33
football 247, 248-9
Forbidden City (Beijing) 306
force 24
Ford, Gerald 318
Ford cars 50
forest floor, rainforest 144-5
forests 142-3, 159
destruction of 177
rainforest 144-5
see also trees
the Forties, clothing 240, 242
fossil fuels, burning 176
fossils 70, 71, 72-3, 89
Fox Talbot, William 327
fox terriers 134
foxes $143,148,151$
foxface fish 98
fractions 47
France
cheese 230
cycling 265
flag 197
football 248
French Empire 322
French Revolution 317
meat 238
World War I 328, 329
World War II 330-1
Franco, General Francisco 316
Franklin, Benjamin 27
freestyle skiing 262
French horns 210
French Polynesia, fish 236
frescoes 209
freshwater crocodile 113
freshwater fish 99
freshwater fishing 270
friction 24
frigatebirds 186
frilled lizards 109
fringing reefs 154
Frobisher, Martin 314
frogs 68, 104-5, 147
frogspawn 104
the Fronde 316
fronts, weather 172-3
fruit 83, 199, 226-7, 228
FSB (Russia) 335
fuel injection systems 51
fungi 33, 86-7, 159
forests 143
tree of life 68-9
funnel-web spiders 88,89

G

Gabon, flag 196
Gaboon vipers 145
Gaelic football 247
Gagarin, Yuri 16, 314, 333
galagos 127
galahs 149
Galápagos Islands 186
Galápagos tortoise 106
galaxies 10, 22
Galilei, Galileo 18
Gallimimus 76
gallinules 117
gallop 281
Galunggung (Java) 161
Gambia, flag 196
game birds 116
feathers 120
meat 239
games
Aztec 299
board 276-7
card 276-7
computer 43
Gandhi, Mahatma 322
Ganesh 202
Ganges, River (India) 182
Gangnam style 214
Garfield, James 319
garfish 98-9, 152
Gargoyleosaurus 75
garlic 198
garter snakes 111
Gasosaurus 76
Gastonia 75
gatehouses 310
gazelles 146
geckos 108, 132, 144
geese 117, 140, 151, 311
feathers 121
migration 123
gemstones 166, 168-9
genes 32
Genesis spacecraft 17
Genghis Khan 302
gentlemen's clothing 241
genus 69

Geoffroy's cats 128
geography 156-99
climate and weather 172-5
continents 182-95
Earth 158-9
earthquakes 162-3
environment in danger 176-7
flags 196-7
food production 198-9
landscape 164-5
our physical world 178-9
our political world 180-1
rocks and minerals 166-9
volcanoes 160-1
geometry 48-9
George I, King 324
George III, King 325
George VI, King 325
Georgia, flag 197
Geosaurus 78
geothermal energy 177
gerbils 124
Germany
bread 232
cheese 230
Cold War 332-3
flag 197
football 248
German Revolution 316
World War I 329
World War II 330-1
germination 80
Geryon, cattle of 293
Ggantija Temples (Malta) 285
Ghana, flag 196
gharials 112, 113
gherkins 199
Ghirlandaio, Domenico 313
ghost crabs 90
giant clams 97, 102, 153
giant tortoises 186
gibbons 127, 145
gila monsters 148
gills 98, 104
ginkgo trees 69, 81, 85
Giraffatitan 74
giraffes 146, 147
Giselle 216
glaciation 164, 167
gladiators 295
gladioli 81, 82
glass 29

gliders 63
global warming 174, 176
globes 315
glockenspiels 211
gloves, baseball 252
Glyptodon 79
gnus 147
Go game 276
goal posts, American football 250
goalkeepers, football 248, 249
goats 141, 239, 311
cheese 231
Göbekli Tepe (Turkey) 285
gods and goddesses
Ancient Americas 299
Ancient Egypt 289
Ancient Greece 291, 292
early civilizations 287
godwits, bar-tailed 123
gold 323
Golden Fleece 293
Golden Gate (San Francisco) 185 golden retrievers 134
Golden Temple (Amritsar) 203
goldendoodles 135
goldfish 99
golf 146
goliath birdeater tarantulas 89
Goniatites 78
Gorbachev, Mikhail 332
Gordon, John Brown 321
gorges 164, 165
gorillas 127, 133, 144-5, 284
Gormley, Antony 209
goshawks 118
Goths 295
Gotland ponies 139
Graf, Steffi 259
Grafström, Gillis 263
Grand Canyon (USA) 185
granite 166-7
Grant, Ulysses S. 319, 321
grapes 199
grass 82-3
grasshoppers 92
grasslands 146-7, 158
gravity 24
Great Barrier Reef (Australia) 193
Great Dark Spot (Neptune) 13
Great Expectations (Dickens) 220
The Great Lafayette 279
Great Pyramid (Egypt) 218

Great Red Spot (Jupiter) 12
Great Wall of China 183, 218, 306-7
great white shark 101
Greece
Ancient 286, 290-1
art 209
bread 232
cheese 230
flag 197
myths 292-3
pasta 235
greenhouse effect 176
greenhouse gases 175
Greenland dogs 134
Grenada, flag 196
grenades 329
grenadiers, Pacific 152
greyhounds 135
Griffith-Joyner, Florence 260
Grimms' Fairy Tales 221
grooming tools, horses 280
ground squirrels 125
group behaviour, monkeys and apes 126
groupers 153
grouse 116, 120, 239
guerezas 127, 145
Guevara, Che 316, 333
Guggenheim Museum (Bilbao) 218-19
Guinea, flag 196
guinea fowl 120
guinea pigs 124, 141
Guinea-Bissau, flag 196
guitars 211
gulls 117, 121
gum trees 85,147
gundogs 134
gunpowder 45, 307
guns 312, 320-1, 329, 335
gurnards 98, 152
Guru Granth Sahib 203
Guyana
fish 236
flag 196

H

habitats 158-9
coral reefs 154-5
deserts 148-9
destruction/loss 33, 146
forests 142-3
oceans 152-3
polar 150-1
rainforest 144-5
savanna 146-7
slugs and snails 97
hadal zone, ocean 153
Haflinger ponies 139
Hagia Sophia (Istanbul) 219
hailstones 175
hailstorms 174
hair 38
hairless cats 137
hairless dogs 134
hairstreak butterflies 95
Haiti
flag 196
Haitian Revolution 317
Haka 215
Hakouichthys 78
Halley's Comet 18
Hall, Virginia 334
Halloween 205
Hallucigenia 71
halogens 31
ham 239
hammer throwing 261
hamsters 124-5
Han Wudi 306
hand-pelota 247
handaxes 44, 184-5
handball 246
Hanging Gardens of Babylon 286
Hannibal 295
Hanoverians 324-5
Hanukkah 205
hard cheese 230-1
Harding, Warren B. 319
Hardiwar (India) 182
hares 133, 150
harlequin sweetlips 98
Harley-Davidson motorbikes 58, 59 harmony 212
harness races 281
Harold II, King 325
harriers 118
Harrison, Benjamin 318
Harrison, William Henry 318
Harry Potter and the Philosopher's
Stone (Rowling) 221
Harvest Festival 204
harvesting 52
hatchetfish 99
hatchlings 115, 117
hats 240-1, 242-3
Hatshepsut 288
haulage vehicles 54
hawk-moths 95
hawkfish 155
hawks 118
hay fever 83
Hayes, Rutherford B. 319
hazardous waste 176
heart
human 34
snakes 110
heat 25
heatwaves 174
heavy horses 138
hedgehogs 68, 142
heels 37
height, horses 139
helicopters 61, 62
Helios 293
hellebores 82
helleborines 82
helmets
Ancient Greek 291
Ancient Roman 294
medieval European 308-9
Mughal 302
Ottoman 301
Samurai 304
Viking 297
hemlock 85
Henie, Sonja 263
Henry III, King 325
Henry IV, King 325
Henry V, King 325
Henry VI, King 324
Henry VIII, King 324
heptathlon 261
Heracles, labours of 293
hermit crabs 91, 102, 155
herons 116
Herrerasaurus 72, 78
Herschel, William 19
Hesperides, golden apples of 293
Heterodontosaurus 75
hibiscus 81
hieroglyphs 289
high jump 260
Hildegard of Bingen 223
Himalayan sheepdogs 135
Himalayas 13

Himeji Castle (Japan) 219
Hindi 206
Hinduism 202
hinged shells 102-3
Hippolyta, belt of 293
hippopotamuses 147, 191
hippy style 243
Hiroshige, Utagawa 305
Hiroshima (Japan) 331
history 282-335
Ancient Americas 298-9
Ancient Egyptians 288-9
Ancient Greeks 190-3
Ancient Rome 294-5
British monarchs 324-5
castles and fortresses 310-11
Cold War 332-3
early empires 286-7
European empires 322-3
exploration 314-15
first humans 284-5
Imperial China 306-7
Imperial Japan 304-5
Industrial Revolution 326-7
medieval Europe 308-9
Ottoman Empire 300-1
Renaissance 312-13
revolutions 316-17
spies 334-5
United States 318-21
Vikings 296-7
World War I and II 328-31
Hitler, Adolf 330, 331
Ho Chi Minh 316
Hobbes, Thomas 223
hobbies
games 276-7
knots 274-5
magic 278-9
see also sports
The Hobbit (Tolkien) 220
hockey 246
underwater 266
Hodgkin, Dorothy 29
hogweed 82
Hohenzollern Castle (Germany) 311
Holi 205
Hollerith, Herman 43
hollyhocks 81
Holocaust Memorial (Berlin) 331
Holy Trinity Church (Slovenia) 308
Homeosaurus 73
homes, electricity 28
Homo erectus 284
Homo neanderthalensis 284
Homo sapiens 284
Honda cars 50
Honduras, flag 196
honey 141
Hoover, Herbert 319
hoplites 291
Hoplopteryx 70
hornbeams 85
horncone, Mexican 81
hornets 143
horse riding 280-1
horseball 281
horses 133, 138-9
cheese 231
horseshoe crabs 153
horsetail 81
hot cross buns 233
hot deserts 148
hot springs 193
Houdini, Harry 279
houseflies 93
Houses of Parliament (London) 218
howler monkeys 126
Huangosaurus 74
Hubble Space Telescope 17
human body 30, 34-41
humans, first 284-5
Hume, David 222
Hummers 51
hummingbirds 117
humpback whales 122, 130
The Hunchback of Notre Dame (Hugo) 221
Hungarian pulis 135
Hungarian vizslas 134
Hungary
bread 232
flag 197
revolution 316, 317
Soviet invasion 333
hunter-gatherers 285
hunting 33
birds of prey 118
crocodilians 112
early civilizations 286
first humans 285
frogs 105
lions 129
meat-eating dinosaurs 77
spiders 89
hurdles 261
hurling 246
hurricanes 174, 175
huskies 134
hyacinths 82
Hyades star cluster 20
Hybodus 78, 79
hybrid cars 51
Hydra 293
hydraulics 55
hydroelectric power 171, 177
hydrogen 30
hydrostatic skeletons 133
hyenas 146, 147
Hypsilophodon 75
hyrachotherium 138

IJ

Iberomesornis 78
ibises 116, 145
Ibizan hounds 134
Ibn-Rushd (Averroes) 223
Icaronycteris 71, 78
ice dancing 263
ice sheets 194
ice skating 263
icebergs 194
Iceland
cheese 230
fish 236
flag 197
Ichthyosaurus 78
icons 202
leyasu, Tokugawa 304, 305
igneous rocks 166
iguanas 108-9, 186
Iguanodon 75
immune system 35
imperialism 322
Impressionism 208-9
Inca civilization 298, 299
incubation, eggs 115
Independence Day (USA) 204
independence movements 322
India 182
art 209
British rule 322
early civilizations 286
flag 197
food production 199
Mughal Empire 302-3
space programme 15, 17
Indian epics 220
Indian Ocean 153, 171
Indonesia
flag 197
food production 199
tsunami 163
Industrial Revolution 326-7
Infrared Astronomical Satellite 19
infrared telescopes 18
insects 92-3
butterflies and moths 94-5
desert 149
eggs 115
forests 143
rainforest 144-5
savanna 147
skeletons 133
tree of life 68
instruments, musical 210-11
insulators 27
intelligence agencies 335
international instruments 210
International Space Station 17
international tractors 52-3
internet 43, 45
Inuits 267, 315
inventions 44-5
Chinese 306-7
Renaissance 312
invertebrates 78
desert 149
forests 143
fossils 72-3
rainforest 144-5
reef 154-5
tree of life 68
lo 161
Iraq, flag 197
Ireland
bread 232
flag 197
meat 238
irises 82
Irish setters 134
Irish wolfhounds 135
iron 326
Irritator 76
Isanosaurus 74
Ishtar Gate (Babylon) 286

ISI (Pakistan) 335
Islam 202, 309
art 208
island chains, volcanic 161
Israel, flag 197
Istanbul (Turkey) 188, 300-1
Italy
cheese 230
flag 197
football 248
Italian Empire 322
pasta 235
Renaissance 312-13
World War I 328, 329
World War II 330-1
Ivar the Boneless 297
ivory 323
Ivory Coast, flag 196
Jack Russell terriers 134
jackfruit 227
Jackson, Andrew 319
Jacquard, Joseph 43
jaguars 128, 129, 145, 147, 187
Jahangir, Emperor 302
Jainism 203
Jakarta (Indonesia) 180
Jamaica, flag 196
James I, King 324
James Webb Space Telescope 19
Jane Eyre (Bronte) 220
janissaries 300
Jantar Mantar Observatory (Delhi) 302
Japan
art 209
cherry blossom 183
earthquakes and tsunamis 162 , 163
fish 236
flag 197
Imperial 304-5
Meiji Restoration 317
space programme 15, 17
World War II 330-1
Japanese bobtails 137
Jarnsmida Bjorn 297
Jason, and the Golden Fleece 293
javelin 261
jawbones 36
jawless fish 99
jaws
crocodilians 112
sharks 101
jays 121
Jazz Age, fashion 243
jeeps 51
Jefferson, Thomas 319
jellyfish 133
jet stream 72
jets (weather) 175
Jewel Box cluster 22
jewelfish 155
jewelled amanitas 87
jewellery
Ancient Egypt 289
Ancient Greece 290
early civilizations 209, 287
Mughal 303
Ottoman 301
Viking 296
Jews
Judaism 203
World War II 331
Jin Mao Tower (Shanghai) 219
jirds 124
jitterbug 214
jive 215
John Deere 52
John Dory 98
Johnson, Amy 63
Johnson, Andrew 319
Johnson, Lyndon B. 318
joints 37
Jolly Roger 197
Jordan 182
flag 197
jousting 309
Joyon, Francis 269
Judas trees 85
judo 272, 273
jujitsu 272
Julius II, Pope 312
jumping 260
horse 281
jumping spiders 88
jungle cat 129
junipers 85
Juno spacecraft 16
Jupiter 12
missions to 16
Jurassic Period 70
Jutland horses 138

KL

K2 179
Kabuki 214
Kalahari Desert 191
kalaripayit 272
kangaroo rats 149
kangaroos 147, 148, 193
Kangchenjunga 179
Kangxi 306
Kant, Immanuel 222
kapok trees 145
Karabakh horses 138
karate 272
Kastelholm Castle (Finland) 311
kayaking 267
Kazakhstan, flag 197
Kelut (Java) 161
kendo 272
Kennedy, John F. 318, 332
Kentrosaurus 70, 74
Kenya, flag 196
Kepler, Johannes 18
kestrels 119, 132
kettle lakes 171
Kevlar 29
keyboards 211, 212-13
KGB 333
Khafra 288
Khrushchev, Nikita 332
Khufu 288
kicking
American football 251
football 249
Kilauea (Hawaii) 160
killer whales 130-1
Kimetto, Dennis Kipruto 260
King Charles spaniels 135
king cobra 110, 111
Kingcycle 64
Kingdoms, Egyptian 289
kingdoms, tree of life 69
kingfishers 117, 121, 143
Kingsley, Mary 315
kingsnakes 110-11, 148
kinkajou 145
kinkalows 137
Kiribati
fish 236
flag 197
kirmish formation 294
kites 116, 119, 307
kitesurfing 267
kittens 136
kiwis 116, 193
Kiyomasa, Kato 304
Knabstrup horses 138
knifefish 99
knights 311
Knossos, Palace of (Crete) 218
knots 274-5
Knox-Johnston, Robin 269
koalas 143, 193
koi carp 98, 99
Komodo dragon 108, 109
Konming lanterns 62
Korat cats 137
Korea 333
Korean War 333
Kosovo, flag 197
Kostelic, Janica 262
Krakatau (Indonesia) 161, 163
krill 91, 150, 153
Krishna 202
Kronosaurus 79
Kublai Khan 306
Kuiper Belt, missions to 17
kung fu 272
Kurilian bobtails 137
Kuwait, flag 197
Kyrgyzstan, flag 197
kyudo 272
labradoodles 135
lacrosse 247
ladybirds 92, 143
Laestrygonians 293
Lafayette, James Armistead 334
Lagos (Nigeria) 190
lagotto romagnolo 134
laikas 134
Lake Eyre (Australia) 193
Lake Huron (Canada/USA) 171
Lake Lagoda (Russian Federation) 188
Lake Michigan (USA) 171
Lake Superior (Canada/USA) 171, 184
Lake Taupo (New Zealand) 161
Lake Titicaca (Bolivia/Peru) 186, 187
Lake Toba (Sumatra) 161
Lake Victoria (Uganda/Kenya/
Tanzania) 171, 190
Lake Vostok (Russia) 195

lakes 164, 165, 171
Laki (Iceland) 161
lamb 239
Lamborghini cars 51
Lancastrians 324-5
lancetfish 153
land iguanas, Galápagos 186
Land Rover cars 51
land slugs 96
land snails 96
land speed record 51
landscape, shaping of 164-5
language 40, 206-7
Laos, flag 197
Laperm longhairs 137
larch 80
Large Magellanic Cloud 22
Lariosaurus 78
larvae 93, 133
Latin 295
Latin American Revolutions 317
latitude 178
Latvia, flag 197
laurels 85
lava 160, 161
Lavoisier, Antoine 29
law, early civilizations 287
laws of motion 24
leaf frogs 104-5
leafy vegetables 228-9
Leakey, Louis 33
leatherback turtles 123
leavened bread 232
leaves
plants 80
trees 84
Lebanon, flag 197
Lee, Robert E. 321
Leedsichthys 79
legless lizards 109
legumes 228-9
Leif the Lucky 297
lemmings 150
lemon trees 85
lemons 199
lemurs 127
Lenin, Vladimir Ilyich 316-17
Leo constellation 20
Leonardo da Vinci 62, 208, 312, 313
leopard cats 129
leopards 69, 128-9
Lepanto, Battle of 300

Lesotho, flag 196
Lesothosaurus 75
lettuce 198
levitation tricks 279
Lhasa apsos 135
Lhotse 1179
Liberia, flag 196
Libya, flag 196
lichens 68, 143
Liechtenstein, flag 197
life
beginning of 70-1
on Earth 159
essentials for 32
tree of 68-9
lifecycle
butterflies 95
crabs 90
frogs 104
insects 93
mushrooms 87
turtles 107
light 25
light bulbs 44
lightning 26, 174
Liliensternus 76
Lilienthal, Otto 63
lilies 81, 82
limbic system 40
limes 199
limestone landscapes 165
limpets 102
Lincoln, Abraham 319, 320, 321
Lindbergh, Charles 63
line dancing 214
lines, fishing 270
The Lion, the Witch and the Wardrobe (Lewis) 221
lionfish 99, 152, 155
lions 69, 128, 129, 146-7
Liopleurodon 78
literature 220-1
Lithuania, flag 197
The Little Prince (Saint-Exupéry) 220
liverwort 81
lizardfish 98, 152
lizards 68, 108-9, 132, 147, 148 eggs 115
llamas 141
loaches 99
lobsters 90-1, 133, 237
Local Group 10

Locke, John 222
locusts 92, 122, 123, 149
lodestones 315
Loganellia 71
loggerhead sea turtles 106
logging 145
long jump 260
Long Valley Caldera (USA) 161
long-distance running 261
long-haired cats 136-7
longhorn beetles 92, 93
longitude 178
Lotus Eaters 293
Lotus Temple (Delhi) 203
Louis XIV, King of France 216, 316
Louis XVI, King of France 317
L'Ouverture, Toussaint 317
Lowland rainforest 145
Lucas terriers 135
Lufengosaurus 74
luge 263
Lunar Reconnaissance Orbiter 16-17
Lunar Roving Vehicle 15
lungs 34
lupins 83
lurchers 135
lures (fishing) 271
lutes 313
Luther, Martin 312
Luxembourg, flag 197
lymphatic system 35
lynxes 128, 129, 143
lycopene 228
Lyra constellation 20
Lystrosaurus 78

MN

M4 globular cluster 22
M13 star cluster 20
M15 star cluster 20
M71 star cluster 20
Maalu 1179
Maat Mons (Venus) 12
macaques 126-7
MacArthur, Ellen 269
Macedonia, flag 197
Machiavelli, Niccolò 223, 312
Machu Picchu (Peru) 298
mackerel 98-9
McKinley, William 318
McLaren 51

Madagascar, flag 196
Madison, James 319
Magellan, Ferdinand 314, 315
Magellan spacecraft 17
Magellanic clouds 22
magic 278-9
magma 159, 160
magnetic field 158
magnetic trains 57
magnetism 24, 28
magnolias 80, 85
magpies 143
mahjong 276
Mahmud II, Sultan 300
Maiasaura 75
Maine coons 137
maize (corn) 198
Malawi, flag 196
Malaysia
fish 236
flag 197
Maldives
fish 236
flag 197
Mali, flag 196
Mallard 56
Malta, flag 197
Mamenchisaurus 74
mammals 124-41
cats 136-7
desert 148
dogs 134-5
egg-laying 68
evolution 78, 79
farm animals 140-1
forests 142-3
horses 138-9
monkeys and apes 126-7
polar regions 150-1
rainforest 144-5
rodents 124-5
savanna 146-7
skeletons 132-3
tree of life 68, 69
whales and relatives 130-1
wild cats 128-9
mammoths 71, 73, 79
man-made elements 30
man-made lakes 171
manatees 68
mancala 276, 277
Manchester terriers 134

mandarin fish 155
Mandarin language 206
mandarins 199
mandolins 211
mandrills 127, 144
mango trees 85
mangroves 80
Manila (Philippines) 180
manta rays 101, 153, 154-5
mantle
Earth 158, 159
Moon 14
manuscripts, illuminated 208
Manx cats 137
Mao Zedong 316, 333
maples 85, 142
maps
Africa 190-1
age of exploration 314-15
animal migration 142-3
Antarctica 194-5
Asia 182-3
climate and weather 172-3
Europe 188-9
European empires 322-3
exploration 314-15
food production 198-9
North America 184-5
Oceania 192-3
our physical world 178-9
our political world 180-1
South America 186-7
water on Earth 170-1
World War I 328
World War II 330
maras 125
marbles 246
Marcos, Ferdinand 317
margays 129
Mariana Trench 159
Marie Antoinette, Queen of France 243, 317
Mariinsky Theatre (St Petersburg) 216
marine life
oceans 152-3
polar regions 150-1
see also crustaceans; fish; seashells; whales
Mariner spacecraft 16
marmosets 126
marmots 125

Marrella 71
Mars 13, 19, 161
missions to 17
Marshall Islands, flag 197
marsupials 68, 193
martens 142
Marx, Karl 222
Mary I, Queen 324
Masai Mara 191
Maseratis 50
masks, baseball 252
mass 24
mass dampers 163
Massey Ferguson tractors 52-3
mastiffs 135
Mata Hari 334
materials 29
mathematics
geometry 48-9
numbers 46-7
matter 11, 25
states of 28
matzah 233
Mauna Loa (Hawaii) 160
Mauritania, flag 196
Mauritius, flag 196
Mawsynram (India) 179
May Day 205
Maya civilization 298, 299
meagres 98
mealworms 133
meanders 164, 165
meat 199, 238-9
meat-eating dinosaurs 76-7
Mecca 202
Medici, Catherine de 216
Medici family 312
medicine, US Civil War 321
medieval period
art 208
clothing 240, 242
Europe 308-9
Mediterranean 189
Medusa 293
meerkats 148
megacities 180
Megalodon 78, 79
Mehmed II (The Conqueror), Sultan 300
Meiji, Emperor 317
Meiji Restoration 317
Melanesia 12
melons 226, 227
memory 40, 41
Mendel, Gregor 33
Mendeleev, Dmitri 31
menorahs 203
men's fashion 240-1
Mercalli scale 162, 163
Mercedes-Benz cars 50-1
Mercury 12
missions to 16
Merychippus 138
Mesopotamia 286
mesosphere 159
Mesozoic Era 70-1
Messenger spacecraft 16
metalloids 31
metals 29, 31
metalware
Ancient Americas 299
Vikings 296-7
metamorphic rocks 167
metamorphosis 95
meteors 19
Mexico
flag 196
history 298-9
Mexican Revolution 317
Mexico City 184
MI6 (UK) 335
mice 124-5, 148
Michelangelo 208, 312, 313
Micronesia 192
flag 197
microscopes 45, 315
microwave ovens 43
Midas, King 293
middle-distance running 261
midsummer 204-5
midwife toads 105
migration, animal 122-3
military tactics, Roman 294
milk 140, 198
cheese-making 230, 231
Milky Way 11, 19, 22
Mill, John Stuart 222
millet 198
millipedes 133
minerals 166-7
Ming dynasty 306
minims 212
mining 145,327
gemstones 169

Minis 51
minke whales 130
minks 142
Minmi 75
Minoan civilization 290
Minos, King 293
Minotaur 293
Miohippus 138
Mir space station 17
missiles, nuclear 333
Mississippi River (USA) 184
Mixosaurus 78
mixtures 28
moats 310
mobile phones 43, 45
Moche people 298
Moctezuma II 299
modern art 209
Moeritherium 79
Mohs hardness scale 167
Moldova, flag 197
mole-rats 125
molecules 28
molluscs 68, 96-7, 102-3
Monaco 181
flag 197
monarch butterflies 95, 122
monarchs, British 324-5
Monet, Claude 209
Mongolia, flag 197
Mongols 305, 306
Monitor lizards 108
monkey puzzle trees 85
monkeys 126-7, 133, 145
monocots 82
Monolophosaurus 76
Monroe, James 319
monsoons 174
Mont Saint-Michel (France) 308
montane savanna 146
Montenegro, flag 197
Montgolfier brothers 62
Moon 11, 14-15, 19
flag 197
landings 15, 333
missions to 15, 16-17
Moon Festival (China) 204
moon moths 94, 95
Moondog 19
moons 11
morays 98-9
Morganucodon 70

Morland, Samuel 42
Morocco, flag 196
mosaics 208, 209
Mosasaurus 79
mosques 202, 208
Mossad (Israel) 335
mosses 69, 71, 142
moths 93, 94-5
Moti Masjid (Delhi) 303
motion, laws of 24
motorbikes 58-9
motte and bailey castles 310
Mount El'brus (Russian Federation) 188
Mount Everest (Nepal) 159, 179, 183 flag 197
Mount Kilimanjaro (Tanzania) 190, 191
Mount McKinley (Alaska) 184
Mount Olympus (Greece) 292
Mount Pelée (Martinique) 161
Mount Tambora (Indonesia) 161
Mount Unzen (Japan) 161
Mount Vesuvius (Italy) 161
Mount Wilhelm (Papua New Guinea) 193
mountain bikes 64, 264
mountains
building 159
habitat 159
tallest 179
movement
and the brain 40
caterpillar 95
frogs 105
monkeys and apes 126
Mozambique, flag 196
MRI scans 41
MSS (China) 335
Mughal Empire 302-3
mulberry trees 85
mullets 98
multiplication 46
mummies 288-9
munchkin cats 136
Murray-Darling River (Australia) 193 muscles 35, 38-9
muscular system 35, 39
mushrooms 68, 86-7, 143
music
how music works 212-13
Imperial Japan 305
medieval Europe 308
musical instruments 210-11, 313
Renaissance 313
musk oxen 151
Muslim art 303
Muttaburrasaurus 75
Myanmar, flag 197
Mycenae 290
myths and legends
Greek 292-3
Imperial China 307
naan bread 232
Nadi Temple (Fiji) 202
Nagasaki (Japan) 331
Namibia, flag 196
narwhals 131, 151
NASA 16-17
National Basketball Association (NBA) 254
nationalism 322
Native Americans, art 208
native religions 203
NATO 332
natterjack toads 105
nature 66-155
animals 88-141
fossils and prehistoric life 72-9
fungi 86-7
habitats 142-55
how life began 70-1
plants 80-5
tree of life 68-9
Nauru 181
flag 197
nautical charts 268
nautilus 97
navelworts 83
navigation tools 315
sailing 268
Navratilova, Martina 259
Nazca people 298
Nazi Party 331
NCG 3603 Nebula 22
Nebuchadnezzar, King of Babylon 286
nebulae 10, 20, 22
nectarines 199
negative numbers 47
Nemean Lion 293
Nemegtbaatar 79
Neogene Period 71
Nepal 183
flag 197

Neptune 13

missions to 17

Neptunea 71
nerves, messages 40
nervous system 26, 35, 40
netball 246
the Netherlands
bread 232
flag 197
nettles 143
networks, computer 42
neutrons 25, 28
Nevado del Ruiz (Colombia) 161
new dandies 240
New Horizons spacecraft 17
New Look fashion 242
New Year's Eve 204
New Zealand 192, 193
flag 197
meat 238
Newgrange (Ireland) 285
Newton, Isaac 18, 25
newts 68, 104-5
Niagara Falls (Canada/USA) 184
Nicaragua 333
flag 196
revolution 317
Nietzsche, Friedrich 222
Niger, flag 196
Nigeria
flag 196
food production 199
population 190
night sky
Northern 20-1
Southern 22-3
Nighthawk 60-1, 63
Nile River 288-9
Nimrud (Assyria) 286
nitrogen 30
Nixon, Richard 318, 332
noble gases 31
non-flowering plants 80-1
non-metals 31
Nordic combined 263
Norfolk terriers 134
Norman cobbs 138
Normans 325
Norse myths 296
North America 184-5
flags 196
food 224-5
population 180, 184
size 178
North Korea 333
flag 197
Northern lights 19
Norway
fish 236
fjords 189
flag 197
Norwegian forest cats 136
notes, musical 212-13
Nothosaurus 78
nuclear arms race 332
nuclear power 27
nucleus, atom 25, 28
numbers 46-7
Roman 295
nursery web spiders 88
The Nutcracker 216
nuts 199
Nyamuragira (Democratic Republic of Congo) 160

0

oaks 85, 142
oats 198
Obama, Barack 319
oboes 210
obsessive-compulsive disorder (OCD) 41
obtuse angles 48
ocean racing 269
Oceania
flags 197
food 225
population 180, 193
size 178
oceans 152-3, 158
acidity 176
ocean floor 170
sizes 171
temperatures 170
ocelot 129
ocicats 137
octaves 213
October Revolution (Russia) 316-17
octopuses 68, 97, 152-3
The Odyssey 293
Of Mice and Men (Steinbeck) 220
off-road bikes 64

off-road vehicles 51
Offa 324
Ohm, Georg Simon 27
oil lamps 291
Okavango Delta 191
Okayama Castle (Japan) 311
oleanders 81
olives 199
Olmec people 298, 299
Olympic Games 290
cycling 265
Olympus Mons (Mars) 13, 161
Oman, flag 197
Omega Centauri cluster 22
onagers 139
Onyx River 195
Opabinia 78
opals 168, 169
Ophiacodon 71, 78
optical telescopes 18
Orange Revolution (Ukraine) 317
oranges 199
orangutans 126, 183
orb formation 294
orbits
Earth 178
Moon 14
planets 13
orcas $150,151,155,194$
orchestras 210
orchids 82, 83, 144, 185
order (classification of life) 69
Ordovician Period 71
organic gemstones 169
organisms, single-cell 69
Organization of African Unity 322
organs 34
oriental cats 137
Orion Nebula 20
Ornithocheirus 78
ornithopods 75
Ornithosuchus 78
Osman I (Gazi), Sultan 300
ospreys 118
ostriches 116, 121, 149
otters 142
Ottoman Empire 300-1
World War I 328, 329
overgrazing 146
owls 116, 119, 132, 149
oxbow lakes 164
oxygen 30, 32, 80, 84
oystercatchers 117
oysters 68, 97, 236, 237

PQ

paces, horse 281
pachisi 277
Pacific islands 192-3
Pacific Ocean 153, 171
paddlefish 99
pages 311
painted lady butterflies 95
painted sun spiders 89
Pakicetus 131
Pakistan, flag 197
Palaeozoic Era 70-1
Palau, flag 197
Paleogene Period 71
Palio Horserace (Siena) 204
palm oil 198
Palmieri, Luigi 163
Panama, flag 196
pandas 33, 143
Pandora's jar 293
pandoro bread 233
panettone 233
Pangea 178
pansies 81
panther chameleons 109
Panthera 69, 73
paper 221, 307
Papua New Guinea, flag 197
Paracelsus 312
Paraguay, flag 196
parallelograms 48, 49
Parasaurolophus 75
parental care
crocodilians 112
midwife toads 105
monkeys and apes 126
Paris (France) 189
parrotfish 98, 155
parrots 117, 144
feathers 120
Parthenon (Athens) 209, 219, 290
partridges 116, 239
paso doble 215
Pascal, Blaise 42
pasque flowers 151
Passchendaele 328
passenger planes 61
passing
American football 251
basketball 255
football 249
Passover 205
pasta 234-5
Pasteur, Louis 33
patience 277
patu digua spiders 89
Pauling, Linus 29
Peace Memorial (Hiroshima) 331
peaches 199
peacock butterflies 94
peacocks 116
feathers 120
peanuts 199
pearls 169
peas 198
pedals, bicycle 64
Peel, Edward 271
Pegasus 293
pegmatites 166
pelargoniums 83
pelicans 116, 189
pellets, owl 119
Pembrokeshire Welsh corgis 135
Penguin paperbacks 220
penguins 116, 132, 150, 151, 194
penny farthings 65
Pentaceratops 74
peppers 199
percentages 47
perception 41
perch 99
Percheron horses 138
perching birds 117
feathers 121
percussion instruments 211
Periodic Table 30-1
Permian Period 70-1
Persephone 293
Perseus constellation 20
Persian cats 137
perspective 313
Peru 186, 187
flag 196
history 286, 298-9
pasta 235
Peruvian Inca Orchid 134
pesticides 176
Peteinosaurus 78
Petra (Jordan) 182
petrification 73
pharaoh hounds 134
pharaohs 288
phases, of Moon 15
pheasants 116, 120, 239
Philippines
flag 197
Yellow Revolution 317
Philoceratops 73
philosophers 222-3
Greek 291
Phioma 79
Phoenicians 314
photosynthesis 80
phylum (classification of life)
69
physics 24-5
phytoplankton 150
pi 49
pianos 211
keyboard 212-13
piccolos 210
pick-up trucks 54
pick-up sticks 276
Pierce, Franklin 318
Piero della Francesca 313
pigeons 117, 121, 132, 239
pigs 141, 199
pikas 150
pill woodlice 91
pillars, formation of 165
pilot whales 131
pines 80, 143
Pioneer spacecraft 16, 17
piranhas 99, 144
pirate flags 197
pistol shrimps 90
pit fruit 226-7
pitch (music) 212-13
pitcher plants 81, 145
pitches, football 248
pitta bread 232
Pixiebob longhairs 137
pizza 232
Placerias 78
Placodus 78
plaice 98
planets 11, 12-13
size of 13
plant-eating dinosaurs 74-5
Plantagenets 325
plantains 199

plants 33, 159
desert 148, 149
forests 142-3
fossils 72
fruit 226-7
growth of 80
how life began 70-1
polar regions 151
rainforest 144-5
savanna 147
tree of life 69
trees 84-5
vegetables 228-9
plasma sphere 27
plastics 29, 44
plate boundaries 159, 162
Plateosaurus 70, 73, 75
platform shoes 241
Plato 223, 291
platypuses 193
platysma 38
Pleiades star cluster 20
Pliohippus 79, 138
Plioplatecarpus 79
ploughs 45, 52, 286
plovers 151
Pluto 19
pod vegetables 228-9
podengos 134
pointe shoes 216, 217
poison
frogs 105, 145
mushrooms 87
plants 81
rainforest animals 145
scorpions 88
snakes 111
spiders 89
poison-dart frogs 104, 105, 144, 145
Poisson d'Avril (France) 205
Poitevin horses 138
poker 277
Poland
bread 232
flag 197
food production 199
Solidarity 317
World War II 330
polar bears 151
Polar cell 173
polar regions 158
exploration 315

Polaris 19, 21
pole vault 260
polecats 142
police vehicles 55
Polk, James K. 318
pollination 83
Pollock, Jackson 209
pollution 176
polo 247, 281
Polo, Marco 314
polygons 48
Polynesia 192
Pompeii 209
Pompidou Centre (Paris) 218
ponies 139
pony of the Americas 139
poodles 135
pool 247
poppies 81,151
population
Africa 180, 190
Antarctica 195
Asia 180, 183
Europe 180, 188
North America 180, 184
Oceania 180, 193
South America 180, 186
porcupine fish 99, 154
porcupines 125
pork 238
porpoises 131
Porsche cars 50-1
Portugal
Carnation Revolution 316
fish 236
flag 197
Portuguese Empire 322
tsunami 163
Poseidon 293
positive numbers 47
Post Impressionism 209
potatoes 198
pottery see ceramics
poultry 239
power stations 27
powers 46
prairie dogs 125
prawns 91
prayer flags 202
Pre-Cambrian Era 70
precious stones 168-9
precipitation 173
prediction tricks 279
prehistoric animals 78-9
see also dinosaurs
prehistoric art 208
prehistoric man 284-5
preserved meats 239
presidents, US 318-19
pretzels 233
prickly pears 148
Pride and Prejudice (Austen) 221
primary feathers 120
primates 68, 126-7
prime numbers 47
printing presses 221, 312
processor chips 42
production tricks 279
programming languages 42
Prometheus 293
prosauropods 74
protists 33, 69, 159
Protoceratops 75
protons 25, 28
Protostega 70
Protosuchus 79
Przewalski's horses 139
pseudoscorpions 89
Psittacosaurus 75
ptarmigans 151
Pterodactyl 70
Pterodaustro 78
pterosaurs 70
Ptolemy 18
puff adders 111
puffballs 86
pufferfish 98
puffins 117, 151
pugs 135
pumas 129
pumpernickel 232
punishments
from the gods 292
medieval European 309
punk style 241, 243
pupae 93
Purim 205
pygmy owls 119
pyramids
Chichen Itza 185
Egyptian 190, 288
Giza 190
square 49
pyroclastic flows 161

Pythagoras 222, 291
Pythagoras's theorem 49
pythons 110-11, 146-7
Qatar, flag 197
Qatrana Castle (Jordan) 311
Qin Shi Huang 306
quadrilaterals 48
quails 116, 141, 239
Quant, Mary 242
quantum physics 25
quarks 25
quartz 166
gems 168-9
Quaternary Period 71
quavers 212
Queen Alexandra's birdwings 94, 95
quince trees 85
quipu 296
Qu'ran 202

R

rabbits 141
raccoons 142
racing cars 51
racket sports 256-7
racketts 313
racquetball 247, 257
radio communications 44
radio telescopes 18
radio waves 25
radios, spies 334
radius 36,48
rafflesia 83, 144
raft spiders 89
Ragdoll cats 137
Ragnar 297
raids, Viking 296
railways
birth of 326,327
US Civil War 320
rain, non-aqueous 175
rainfall 171, 173, 179
rainforest 144-5
Amazon 187
Costa Rica 185
raising aces trick 279
Raleigh, Sir Walter 315
Ramadan 204
Ramses II 288
Range Rover cars 51
rapeseed 198

rapids 164
raptors 118-19
rare earth metals 31
rats 124-5
ratsnakes 111
rattlesnakes 110-11, 149
rauschpfeife 313
RAW (India) 335
ray-finned fish 68
rays $68,101,153,154-5$
Reagan, Ronald 319, 332
real tennis 246, 257
Realism, art 208
rebecs 313
recorders 313
recording devices 334
rectangles 48, 49
recycling 177
redshanks 117
redwoods 84
reef fish 154-5
reels, fishing 270
reflecting telescopes 18
Reflection nebula 20
reflective symmetry 49
reflex angles 48
refracting telescopes 18
refrigerators 44
reindeer 150-1
Reinsch, Gabriele 260
relay running 261
religion
Ancient Americas 299
Ancient Egypt 289
Ancient Greece 291
early civilizations 287
Imperial China 307
Imperial Japan 304
medieval Europe 309
world religions 202-3
remora fish 153
Renaissance 312-13
art 208
fashion 242
renewable energy 177
Renoir, Pierre-Auguste 208
reproductive system 35
reptiles 106-13
crocodiles and alligators 112-13
desert 148
lizards 108-9
prehistoric 78, 79
rainforest 144-5
savanna 146-7
skeletons 132
snakes 110-11
tree of life 68
turtles and tortoises 106-7
reservoirs 171
respiratory system 35
restoration tricks 279
revolutions 316-17
Rhabdodon 75
Rhamphorynchus 78
rhinoceroses 68, 79, 147
Rhodesian ridgebacks 135
rhomboids 38
rhombuses 48, 49
rhythm 212-13
Rialto Bridge (Venice) 313
rice 198
Richard I (The Lionheart), King 309, 325
Richard III, King 324
Richter scale 163
riding gear 280
rifles 321
right angles 48
right whales 130-1
rigs, fishing 270
rings, planetary 12-13
Rio Carnival (Brazil) 204
rituals 299
river bank, rainforest 144-5
river dolphins 131
rivers 159, 171
landscape formation 164, 165
road bikes 65, 265
road racing 265
roads, Roman 295
Roaring Forties 172
Roaring Twenties, clothing 240, 243
Robertia 78
robins 117, 142
robots 43
rock art
Aboriginal 192
prehistoric 208, 285
rock cycle 167
Rocket, Stephenson's 57, 326
rockling 98
rocks 166-7
Rococo
art 208
clothing 241
rodents 68, 124-5
rodeo 281
Rodin, Auguste 209
rods, fishing 270
roe, fish 237
Rollo 297
rolls, bread 232-3
Romania, flag 197
Rome, Ancient 286, 294-5
art 209
clothing 240
flag 196
trade 314
Rome (Italy) 189, 313
Romeo and Juliet (Shakespeare) 221
Romulus and Remus 295
rooks 121
Roosevelt, Franklin D. 319
Roosevelt, Theodore 318, 330
root vegetables 228-9
roots, plant 80
ropes, knots 274-5
rosary peas 81
Rosenberg, Julius and Ethel 334
roses 83
Rosetta spacecraft 16
Rosette nebula 22
rotational symmetry 49
Rotorua (New Zealand) 193
Rotularia 71
round fish 236-7
rounders 247
Rousseau, Jean-Jacques 222
Route du Rhum 269
rowans 85
rowing 267
royal grammas 98
Royal Opera House (London) 216
rubies 169
Rubik's cube 277
rudders, ship's 306
rugby 247
rumba 215
rummy 277
runes 296
running 260
Russia
area 181, 183, 188
earthquake 162
flag 197
food production 199
population 188
space programme 15
World War I 328, 329
see also Soviet Union
Russian black terriers 134
Russian blue cats 137
Russian toy dogs 135
Rutherford, Ernest 25
Rwanda, flag 196
rye 198

s

sacred dance 214
sacrifices 299
saddles 280
safety bicycles 65
Sagrada Familia (Barcelona) 218
Sahara Desert 190
sailing 268-9
St Basil's Cathedral (Moscow) 219
St Bernards 135
St Demetrios of Thessaloniki
(Bulgaria) 308
St Elmo's fire 175
St Kitts \& Nevis, flag 196
St Patrick's Day 205
St Peter's Basilica (Rome) 202, 313
St Vincent \& the Grenadines, flag 196
salamanders 68, 104, 132
salame 239
Salar de Uyuni (Bolivia) 187
salmon, Atlantic 122
salsa 215
salt pans 187
salt water 170
fishing 270
Saltasaurus 74
salted fish 236
saltwater crocodiles 112
saltwater fish 98-9
salukis 135
Salyut space station 16
samba 215
Samburu people 11
Samoa, flag 197
samoyeds 134
Samurai warriors 304-5
San Marino 181
flag 197
sand cats 129
sand dunes 148

sand spits 164
sanshou 272
Santa Maria (Guatemala) 161
São Paulo (Brazil) 186
São Tomé \& Príncipe, flag 196
sapphires 168-9
Sargassum fish 99
sartorius 38
Sartre, Jean-Paul 223
sashimi 236
satellites 45, 173, 333
Saturn 12, 19
missions to 17
satyrs 292
Saudi Arabia, flag 197
Saumur Castle (France) 311
Sauropelta 75
sauropods 74
sausages 238,239
savanna 146-7
Savannah cats 137
Saxe-Coburg-Gotha 325
scent hounds 135
schools (fish) 153
science 10-41
biology 32-41
chemistry 28-31
physics 24-7
Renaissance 312
scientific journeys 315
space 10-23
scops owls 119
scorpionfish 98
scorpions 68, 88-9, 144, 149
Scott, Robert Falcon 194, 315
Scottish fold cats 137
Scottish terriers 134
screech owls 119
Scutosaurus 70
Scylla 293
sea beets 83
sea birds 117,121
sea bream 98-9
sea fans 154-5
sea level, rising 176
sea lions 152
sea scorpions 98
sea slaters 91
sea slugs 96-7, 155
sea snails
fossils 72
shells 102-3
sea sponges 68,155
sea squirts 154
sea urchins 133, 237
seadragons 98
seahorses 98, 99, 152, 155
seals 150, 151, 152, 194
seashells 102-3
seasons 172
polar 150
trees 84
secondary feathers 121
secret agents 334
secret compartments 335
secretary birds 119
sectors 48
sediment 164
sedimentary rocks 166-7
seeds
dispersal 80
food 199
fossils 72
fruit 83, 226, 227
germination 80
planting 52
vegetables 228
segments 48
seismology 162, 163
Selim I (The Grim), Sultan 300
Selkirk rex cats 137
semaphore 197
semi-precious stones 168-9
semibreves 212
semiquavers 212
semitones 213
Senegal, flag 196
senet 277
senses 40
sharks 101
Seoul (South Korea) 180
sepak takraw 246
sequences, number 46
Serbia, flag 197
Serengeti 146
migration 123
servals 128, 146
SETI project 19
Seven Little Australians (Turner) 220
sewage 176
sextants 44,315
Seychelles
fish 236
flag 196

Shackleton, Ernest 194, 315
Shah Jahan, Emperor 302, 303
Shakespeare, William 221
shamanism 203
Shang dynasty 306
sharks 68, 98, 100-1
coral reefs 154-5
oceans 152, 153
polar regions 151
sharps (music) 213
sheep 140-1, 239, 311
cheese 231
sheepdogs 135
shellfish 237
shells
crustaceans 90-1
seashells 102-3
snails 96, 97, 102-3
turtles and tortoises 106
Shetland ponies 139
shield volcanoes 160
shields
Ancient Greek 291
Ottoman 301
Roman 294
Viking 297
Shinto 203, 304
ships
ancient explorers 314
Ancient Greek 291
US Civil War 320
Viking 296
World War I 329
World War II 331
shire horses 138
shoals 153
shock waves (earthquakes) 162
shoes
ballet 216, 217
dancing 215
Imperial China 307
men's fashions 240-1
women's fashions 242-3
Shoguns 304
Shonisaurus 78
shopping, online 43
short-haired cats 136-7
shot put 247, 261
shrimps 90-1, 153, 154
Shunosaurus 74
shuttlecocks 257
siamang 127

Siamese cats 136
Siamese fighting fish 99
Siberian cats 136
Siberian huskies 134
Siddhartha Gautama 223
sidecars 58-9
siege weapons 311
Sierra Leone, flag 196
Sierra Negra (Galápagos) 160
sifakas 127
sight hounds 135
sign language 207
signals
with flags 197
officials' (basketball) 255
referee's (American football) 251
Sikhism 203
silk 306
Silk Road 307
Silurian Period 71
silver birch 85
Simosuchus 78
Sinclair C5 64
Singapore, flag 197
Singapura cats 137
singing dogs, New Guinea 134
Sinosauropteryx 76
Sirens 293
Sisyphus 292
skates 101
skating 263
skeletal system 35,37
skeletons
animal 132-3
human 36-7
squirrel 124
ski jumping 263
skiing 262-3
skin 34
skinks 109
skuas 151
skulls
dinosaurs 75, 77
human 36
skunk cabbage, Western 83
skunks 142
Skylab 16
skylarks 117
skyscrapers
earthquakes 163
tallest 219
slalom 262

slavery 323
sledges 315
sleight of hand 279
sliding sports 263
Slocum, Joshua 269
Slovakia, flag 197
Slovenia, flag 197
slugs 96-7
eggs 115
Smalls, Robert 321
smart casual clothing 240
Smilodon 79
smoked fish 236
snailfish 153
snails 68, 96-7
eggs 115
snakes 68, 110-11, 132, 146-7, 148
eggs 115
rainforest 144-5
snakes and ladders 276
snapdragons 83
snappers 98
snooker 247
snowboarding 262
Snowshoe cats 137
snowstorms 174
snowy owls 119, 150
social networking 43
society
Imperial Japan 304
Roman 295
Viking 296
Socrates 223, 291
soft cheese 230
soft coral 155
softball 247
software 42
Soho spacecraft 16
Solar Impulse 263
solar power 27, 177
Solar System 11, 12-13
soldiers
US Civil War 320-1
World War I 329
World War II 330
soles 98
Solidarity 317
solitaire 276
Solomon Islands, flag 197
solutions 28
Somali cats 137

Somalia, flag 196
sombo 272
Somme, Battle of the 328
Song dynasty 306
sorghum 198
Sorraia ponies 139
sorrel 143
Sotomayor, Javier 260
sound barrier 61
sound waves 25
South Africa, flag 196
South America 186-7
ancient civilizations 298-9
flags 196
food 224
population 180, 186
size 178
Spanish, Portuguese empires 322
South Atlantic Race 269
South Korea 333
flag 197
South Pole 194
flag 197
South Sudan, flag 196
Southern lights 19
Southern Ocean 153, 171
Soviet Union
Cold War 332-3
space programme 15, 16-17
World War II 330-1
see also Russia
soya beans 198
space 10-11
exploration 16-17, 314
Northern skies 20-1
Southern skies 22-3
volcanoes in 161
Space Race 15, 333
space walks 333
Spain
flag 197
food production 198
football 248
meat 238
Spanish Civil War 316
Spanish Empire 322
spaniels 134-5
Spanish language 206
Spanish water dogs 134
sparrowhawks 143
spears 44
species 69
speed
leopards 129
trains 57
speed skating 263
sperm whales 130-1, 152
sphagnum 81
Sphenosuchus 79
spheres 49
Sphinx (Egypt) 190, 218, 289
Sphynx cats 137
spices 323
spider crabs 90
spider flowers, Brazilian 83
spider monkeys 145
spiders 68, 88-9, 133, 149
spiderworts 82
spies 334-5
spinach 198
spine 36
spinning machines 327
Spinosaurus 76
spiral staircases 310
spitz dogs 134
sponges $68,71,153$
spore trees 85
spores 86,87
sporting dance 215
sports
American football 250-1
athletics 260-1
ball sports 246-7
baseball 252-3
basketball 254-5
combat sports 272-3
cycling 264-5
fishing 270-1
football 248-9
horse sports 281
racket sports 256-7
sailing 268-9
tennis 258-9
water sports 266-7
winter sports 262-3
sports bikes 58-9
spotlight loosejaws 152
sprinting 261
sprites 175
spruce 85
Sputnik 1 16, 333
squared numbers 46
squares 48,49
squash 246,256
squid $68,97,150,153,237$
squires 311
squirrel monkeys 126
squirrelfish 98
squirrels 124-5, 133
SR-71 Blackbird 62-3
Sri Lanka, flag 197
stacks, formation of 165
stag beetles 92, 143
staghorn coral 155
Stagonolepis 78
stalactites 165
stalagmites 165
Stalin, Joseph 332
standard bikes 58
star clusters 20, 22
star forts 310
starlings 121, 132
stars 10
Northern skies 20-1
Southern skies 22-3
static electricity 26
staves (music) 212-13
stealth fighters 60-1, 63
steam engines 44-5, 56, 320, 326, 327
steeplechase 281
stegosaurs 74
Stegosaurus 74, 75
stellar neighbourhood 11
stem vegetables 228, 229
Stenacanthus 71
Stephenson, George 326, 327
Stephenson, Robert 57, 326
stilt fishermen 271
stingrays 101
stink Lilies 83
stollen 233
stonefish 98, 153
Stonehenge (England) 18, 204-5, 285
stonemasons 311
storks 116, 121
stratosphere 159
stratovolcanoes 160
street dance 215
strike aircraft 60-1
string instruments 211
string trick, magic 279
Struthiomimus 73, 76
Stuarts 324
stunts, motorbike 58
stupas 202

Styracosaurus 74
subtraction 46
Suchomimus 76
suckerfish 271
Sudan, flag 196
Suez Crisis 322
Suffolk Punch horses 138
sugar beet 198
sugar cane 198, 323
Suleiman I (The Magnificent), Sultan 300, 301
Sultan Ahmed Mosque (Istanbul) 300-1
sultans, Ottoman 300-1
Sumatra, earthquakes and tsunamis 162, 163
Sumba ponies 139
Sumer 286
sumo wrestling 272, 273
Sun 12, 19
distance of planets from 12-13
missions to 16-17
Sun Yat-sen 317
sundog 19
sunfish 99
sunflower seeds 198
sunlit zone, ocean 152-3
sunspots 19, 175
supercars 50-1
superclusters 10
supercomputers 42
supersonic flight $60,61,62$
supervolcanoes 161
surface area 49
surfing 192, 267
surgeon fish 99, 154
Suriname, flag 196
Surrealism 209
surveillance cameras 43
sushi 236
suspension tricks 279
suspensions 28
swallows 117
migration 122
swallowtail butterflies 94, 95, 143
Swan Lake 216
swans 117
feathers 121
Swaziland, flag 196
Sweden
flag 197
pasta-eating 235
sweet peas 83
sweet potatoes 198
swifts 117
swimming 266
Swinging Sixties 242
switches 26
Switzerland
cheese 230
flag 197
pasta-eating 235
Sydney (Australia) 193
Sydney Opera House 192, 218
symbols
numerical 46
religious 202-3
synaesthesia 41
synchronized swimming 266
synthetic fibres 29
Syria, flag 197
Syrian ponies 139

T

table tennis 246,256
table top games 276-7
tack, horse 280
tacking (sailing) 269
tackle, fishing 270
tackling (football) 249
tadpoles 104
taekwondo 272
Taft, William H. 318
taichu calendar 307
tail feathers 120
tails
cats 136
dinosaurs 75
lizards 109
monkeys 126
taipan, Australian 111
Taiwan, flag 197
Taj Mahal (Agra, India) 182, 218, 303
Tajikistan, flag 197
Takatsuna, Sasaki 304
talons 118
tamarins 126
tandem cycles 65
Tang dynasty 306
tangerines 199
tango 215
tangrams 49
tankers 54
tanks 329, 331

Tantalus 292
Tanzania, flag 196
Taoism 203
taolu 272
tapestries 208
tapirs 68
tarantulas 89, 133, 149
Tasmanian devils 193
Tay Ninh Temple (Vietnam) 203
tea 323
technology 42-65
computers 42-3
inventions 44-5
vehicles 50-65
tectonic plates 159, 162
tegu lizards 109
telegraphs 321, 327
telephones 44, 327
teleportation tricks 279
telescopes 18, 315
television 44
Telford, Thomas 327
Temnodontosaurus 78
temperate deciduous forests 142
temperate dry forests 142
temperatures
extreme 179
water 170
Temple of Heaven (Beijing) 219
tempo 213
tendons 39
tennis 246, 256, 258-9
Tentosaurus 75
Teotihuacan 298
Teratornis 78
Tereshkova, Valentina 333
termites 147
terns 122, 123
Terracotta Army 306
terrapins 107
terriers 134
Tesla, Nikola 27
testudo 294
Tet Trung Thu (Vietnam) 204
tetras 99
Thai boxing 272
Thai ridgebacks 135
Thai water dragon 109
Thailand, flag 197
Thales "the Wise" 222
Thanksgiving (USA) 205
theatre, Imperial Japan 305

Thecodontosaurus 73
theodolites 312
Therizonosaurus 76
thermosphere 159
theropods 76-7
Theseus 293
Thiepval (France) 328
Thirties, fashion 240, 242
Thomas Aquinas 223
thorny devils 148
thoroughbred horses 138
thoughts 40
throwing 260
thunderstorms 174
Thylacosmilus 71
tidal energy 171, 177
tidal surges 171
Tiffanie cats 137
tiger sharks 100, 154
tigers 69, 128, 129, 133
Tikal 298
Tiktaalik 71
tilapia 99
Tillandsia 81
time signatures 212
time zones 180
tissue 34
Titanosaurus 75
Titans 292
Titian 208
tits 142
To Kill a Mockingbird (Lee) 221
toads 68, 104-5, 147
toes 37
Togo, flag 196
Tokyo (Japan) 180, 183
Toltec people 298, 299
Tomato Battle (Spain) 204
tomatoes 199
Tomb of Humayun (Delhi) 303
Tomb of Safdarjung (Delhi) 303
Tomba, Alberto 262
tones (music) 213
Tonga, flag 197
tongues
cats 136
frogs 105
snakes forked 110
Tonkinese cats 137
tools
early 284-5
early civilizations 286

magicians 278
monkeys and apes 126
navigation 315
toothed whales 130
topaz 169
Topkapı Palace (Istanbul) 300
Torah 203
tornadoes 174, 175
tortilla 232
tortoises 106-7, 132, 147, 148, 186
eggs 115
tortures 309
Torvill, Jayne 263
totem poles 208
toucans 116, 144
feathers 120
Tour de France 265
tourer motorbikes 58
towns, rise of the new 327
Toyota cars 50, 51
track bikes 65, 265
tracks
athletics 260
cycling 264-5
sliding sports 263
tractors 52-3
trade
Ancient Egypt 314
Ancient Rome 314
European empires 323
trains 56-7
Trakai Island Castle (Lithuania) 308
transformation, magic 279
transition metals 31
transport
aircraft 60-3
bicycles 64-5
cars 50-1
motorbikes 58-9
trains 56-7
transporters 54
trapdoor spiders 88
trapeziums 48, 49
treasure, Viking 296-7
treble clef 212
trebuchets 311
tree ferns 850
tree frogs 104, 144, 185
tree of life 68-9
tree rings 84
trees 84-5
see also forests
treesnakes 111
trenches 328-9
Trevithick, Richard 56, 57, 326, 327
triangles 48, 49
Triassic Period 70
Triceratops 73, 74, 75
tricks
magic 278-9
of the mind 41
trilobites 70-1, 72
Trinidad \& Tobago, flag 196
triple jump 260
triremes 291
triticale 198
Triton 161
Trojan Horse 290, 293
trombones 210
tropical storms 175
troposphere 159
trotting 281
trout 99
trucks 54-5
Antarctica 195
Truman, Harry S. 319, 333
trumpetfish 98-9
trumpets 210
tsetse flies 147
tsoureke 233
tsunamis 163
tubas 210
tubers 229
tucuxi dolphins 130
Tudors 324
tughras 300
tulip trees 80
tulips 81
tunas 271
tuning forks 25
Tunisia
flag 196
pasta-eating 235
Tuojiangosaurus 72
turacos 116
turbot 98
Turkey 300
bread 232
flag 197
turkeys 116, 120, 141, 239
Turkish Angoras 137
Turkish Vans 136
Turkmenistan, flag 197
turnips 199
turpentine trees 85
turtles 68, 106-7, 132, 144, 155
eggs 115
migration 123
tusk shells 103
tuskfish 98
Tutankhamun 288
Tuthmosis III 288
Tuvalu 181
flag 197
twilight zone, ocean 152-3
twist 214
twisters 175
Tyler, John 318
Tyrannosaurus rex 72-3, 76,77

UV

Uganda, flag 196
Uintatherium 71, 79
ukeleles 211
Ukraine
flag 197
food production 199
Orange Revolution 317
Ulama 299
ultraviolet 25
ultraviolet telescopes 18
Uluru (Australia) 192
umpires
baseball 252
tennis 258
underground railways 57
understorey, rainforest 144-5
underwater hockey 266
Underworld 292, 293
unicycles 65
uniforms
US Civil War 320
Vietnam War 333
World War I 329
Unionists (US Civil War) 320-1
United Arab Emirates, flag 197
United Kingdom
British Empire 322
flag 197
monarchs 324-5
World War I 328
World War II 330-1
United States 184-5
American Revolution 317
area 181

Cold War 332-3
European empires 322
flag 196
food production 198
meat 238
pasta 235
population 184
presidents 318-19
space programme 15, 16-17
tornadoes 174
US Civil War 320-1
World War I 328, 329
World War II 330-1
Universe 10-11
Ur (Mesopotamia) 208, 286
Uranus 13, 19
urinary system 35
Ursa Major 19
Uruguay
flag 196
football 248
meat 238
Uruk 286
Uzbekistan, flag 197
Valles Caldera (New Mexico) 161
valleys, glaciated 164
Van Buren, Martin 319
Van Gogh, Vincent 209
vanishing tricks 279
Vanuatu, flag 197
vaquitas 131
Vargas, Getulio 316
Vatican City 181
flag 197
Vegavis 70
vegetables 198-9, 228-9
vehicles
aircraft 60-3
bicycles 64-5
motorbikes 58-9
tractors 52-3
trains 56-7
trucks and diggers 54-5
Velocar 64-5
velocipedes 65
Velociraptor 76
velodromes 265
Velux 5 Oceans (yacht race) 269
Venezuela 186 flag 196
Venice (Italy) 313
Carnival 205

venison 239
Venus 12, 19, 161
missions to 17
Venus figurines 285
Venus flytraps 81
Verdun, Battle of 328
Versailles (France) 216
vertebrates
fossils 73
tree of life 68
Vesalius, Andreas 312
vexillology 196
Victoria, Queen 325
Victoria Falls (Zambia/Zimbabwe) 191
Victorian period, fashion 243
Vietnam
August Revolution 316
flag 197
Vietnam War 333
Vikings 296-7, 314
Vinson Massif 195
violas 211
violins 25, 211
viperfish 152
vipers 110-11, 145
Virgin Galactic 17
vitamins, vegetables 228
volcanoes 70, 160-1, 167
oceanic 170
voles 124-5
Volga River (Russian Federation) 188
Volkswagen cars 50
volleyball 246
Volta, Alessandro 27, 327
voltage 27
Voltaire 222
volume 49
Volvo Ocean Race 269
Voyager spacecraft 16, 17
Vulcanodon 74
vultures 118, 146-7, 149

WXYZ

wading birds 117
feathers 121
Wai Khru Ram Muay 215
wake robins 143
wakeboarding 267
walking, horses 281
walruses 151
migration 122
waltzes 215
wandering spiders, Brazilian 89, 145
wands, magic 278
warblers 117
warfare see arms and armour warriors
Ancient Greek 291
Ancient Rome 294
Aztec 299
early civilizations 287
Mongol 306
Warsaw Pact 332
Washington, George 318
wasps 93, 143, 149
waste 176-7
water
on Earth 170-1
and habitat loss 146
and life 32
molecule 28
water buffaloes, cheese 231
water cycle 171
water erosion 165
water hemlocks 81
water lilies 80
water polo 247, 266
water power 171
water spiders 88
water sports 266-7
water to ice trick 278
waterfalls, formation of 164
watermelons 199
water-skiing 267
Watt, James 327
weapons see arms and armour weather 172-3
extreme 174-5, 176
record-breaking 173
weather balloons 173
weathering 167
webs, spider 89
weight 24
weights (fishing) 270
Welbike scooter 59
Wellingtonia 85
Welsh mountain ponies 139
West Highland white terriers 134
Western Pygmy Blue butterflies 94, 95
Western Wall (Jerusalem) 203
wetlands 159
whale sharks 100, 155
whales 68, 130-1, 152, 194
migration 122
polar regions 150-1
wheat 198
wheaten terriers 134
Wheatstone, Charles 327
wheel, invention of 45, 287
whelks 97, 102, 237
whip spiders 89
whiskers, cats 136
White Nights Festival (St
Petersburg) 205
white water rafting 267
Whitney, Eli 327
wild ass, African 139
wild boars 143
wild cats 128-9
wild dogs, African 147
wildebeest 122, 123, 146, 191
wildlife see animals
William IV, King 325
William the Conqueror 309
Williams, Serena 259
Willoughby, Hugh 315
willows 85, 151
Wilson, Woodrow 319
wind 173
katabatic 175
sailing 269
wind displays 268
wind erosion 164, 165
wind power 177
Windcheetah bicycles 64-5
Windsors 325
windsurfing 267
wings
birds 116, 118, 120, 121
insect 92
winter sports 262-3
winter's bark 80
Wittgenstein, Ludwig 223
Wiwaxia 78
wolf spiders 88
Wollstonecraft, Mary 222
wolverines 151
wolves 133, 134, 143, 151
dire 79
maned 147
women's fashion 242-3
wood 29, 177
woodcocks 120
wooded savanna 146
woodpeckers 143, 149 feathers 120
woodwind instruments 210
wool 140
working dogs 135
world records, athletics 260
World Series baseball 253
World War I 328-9
World War II 330-1
World Wide Web 45
wrentits 117
wrestling 272
Wright brothers 63
writing
Chinese 306
early civilizations 287
Greek 291
Maya 296
music 212
Wu Zetian 306
X-ray telescopes 18
X-rays 25
Xenophora 71
Xinhai Revolution 317
xylophones 211
yachts 268-9
yams 199
Yangtze River (China) 183
yeasts 69
Yellow Revolution (Philippines) 318
Yellowstone Caldera (USA) 161
Yellowstone National Park (USA) 185
Yemen, flag 197
yews 80,85
ylang ylang 85
Yongle 306
Yoritomo, Minamoto 304, 305
Yorkists 324
Yorkshire terriers 134
Yoshisada, Nitta 304
Ypres, Battle of 328
Zambia, flag 196
Zapata, Emiliano 317
Zapotec people 298
zebras 139, 146, 191
Zeppelin, Ferdinand, Graf von 63
Zhou dynasty 306
Ziggurat (Ur) 286
Zimbabwe, flag 196
Zoroastrianism 203
Zuse, Konrad 43

Acknowledgments

Smithsonian Enterprises:
President Christopher A Liedel
Senior Vice President, Carol LeBlanc
Vice President, Brigid Ferraro
Licensing Manager, Ellen Nanney
Key Accounts Manager, Cheryl Stepanek
Product Development Manager, Kealy Gordon
Consultants at the Smithsonian Institution:
National Museum of Natural History: Dr. Salima Ikram Egyptology Unit Head, Department of Anthropology; Dr William Fitzhugh, Curator of Archaeology and Director of Arctic Studies Center, Department of Anthropology; James Harle, Volunteer/Docent, Department of Botany; Dr. Jeffrey Post, Geologist, National Gem and Mineral Collection; Dr. Alexander Nagel, Research Associate, Department of Anthropology; Dr. Michael Brett-Surman, Museum Specialis Department of Paleobiology; Dr. Benjamin J. Andrews Research Geologist, Department of Mineral Sciences and Dr. Don E. Wilson, Emeritus Curator, Department of Vertebrate Zoology.

National Air and Space Museum: Dr. Alex Spencer, Curator, Division of Aeronautics; Dr. F. Robert van der Linden Chairman, Division of Aeronautics; and Dr. Andrew Johnston Research Specialist, Center for Earth and Planetary Studies.

Smithsonian Project Coordinator: Cheryl Stepanek

Dorling Kindersley would like to thank the following people for their assistance with this book:
Bharti Bedi, Shaila Brown, Stella Caldwell, Steven Carton Carey Scott, Virien Chopra, Chris Hawkes, Clare Hibbert, Kathryn Hill, Priyanka Kharbanda, Ann Kramer, Sam Priddy, Esther Ripley, and Sheryl Sadana, for additional editing; Claire Gell for jacket editorial; Tannishtha Chakraborthy, Mandy Earey, Fiona Macdonald, Isha Nagar, Pooja Pipil, Nidhi Rastogi, Damion Robinson, Tanvi Sahu, Mary Sandberg, Heena Sharma, Smiljka Surla, and Jacqui Swan for additional design; Mohammad Usman for hi-res assistance; Pawan Kumar for CTS assistance; Caroline Hunt for proofreading: Helen Peters for the index; Sakshi Saluja and Deepak Negi for picture esearch assistance; Peter Bull, KJA Artists, and Encompass Graphics for illustration; Stefan Podhorodecki and James Mann for photography. The publisher would also like to thank Mark Ryan and the Marylebone Cricket Club, Lord's Ground, for the use of their Real Tennis ball; and Jimmy Perrett and the Wandsworth Demons for the use of their AFL balls

Picture credits

The publisher would like to thank the following for their kind permission to reproduce their photographs:
(Key: a-above; b-below/bottom; c-centre; f-far; l-left; r-right; t-top)

1 Dorling Kindersley: The Natural History Museum, London (cla); The Real Aeroplane Company (fcla); University of Pennsylvania Museum of Archaeology and Anthropology (c): Jari Peltomaki (ca/owl). Dreamstime.com: Eric Isselee (ca/ Hermit crab): Karam Miri (ca). Fotolia: Jan Will (c/zebra) 2 Dorling Kindersley: Brooklands Museum (cr); Egyptian Museum, Cairo (fcla); Natural History Museum, London (ca); Paul Rackham (ca/Caterpillar); The National Music Museum (cl); The Natural History Museum, London (c); Christian Dior (c/ bag); DB Schenker (c/DB Schenker Diesel); Durham University Oriental Museum (fcra, cl/war fan, c/Glass bowl); Forrest L. Mitchell / James Laswel (c/Libellula saturata). Fotolia Shchipkova Elena (ca/jaguar). 3 Dorling Kindersley: Dave King (cla); Motorcycle Heritage Museum, Westerville, Ohio (fcra); University of Pennsylvania Museum of Archaeology and Anthropology (c); Lister Wilder (c/Tractor); Jari Peltomaki (ca) Dreamstime.com: Am Wu / Amwu (cl). 4 Dorling Kindersley: The Royal Academy of Music (br). Dreamstime.com: The Natural History Museum, London (bc). 5 Dorling Kindersley: Royal Green Jackets Museum, Winchester (bc); The Shuttleworth Collection (ftl); Linda Pitkin (fbr); Courtesy of Durham University Oriental Museum (tc/Fan). Dreamstime. com: Vtupinamba (tc). 6 Dorling Kindersley: 4hoplites; Natural History Museum, London (tl); Brooklands Museum (tc); Greg and Yvonne Dean (br). 7 Dorling Kindersley: Durham University Oriental Museum (bc/Mummy mask Cartonnage). Fotolia: Eric Isselee (bc, fbr). Getty Images: felipedupouy.com / Photodisc (br). NASA: (ftr). 8 Dorling Kindersley: National Cycle Collection (fcla); The Science Museum, London (ca); National Railway Museum, York (cb). 9 Dorling Kindersley: RAF Boulmer, Northumberland (cla); The Science Museum, London Dave King (cb). NASA: JPL-Caltech (ftl). 10 ESO: (c). NASA: CXC / SAO / J. Wang et al), Optical (DSS \& NOAO / AURA / NSF KPNO $0.9-\mathrm{m} / \mathrm{T}$. Rector et al) (cb/rosette); Sally Hunsberger
(Lowell Obs.), Jane Charlton (Penn State) et al.; (r); ESA / Hubble and the Hubble Heritage Team (bc); ESA and the Hubble Heritage Team STScl / AURA)-ESA / Hubble Collaboration (bc/ N90); ESA, ESO, \& Danny LaCrue (cb). 11 ESO: E. Slawik (crb). NASA: (cl, clb); Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute (cb); Johns Hopkin Applied Physics Laboratory (br). 12 ESO: NASA, ESA, and A. Simon (Goddard Space Flight Center) (clb). NASA: (ca, cra). 13 NASA: ESA, and L. Lamy (Observatory of Paris, CNRS, CNES) (cb); JPL (cra, crb). 14 NASA: Goddard / MIT / Brown (bl). 15 NASA: (crb). 16 Dorling Kindersley: Dave Shayler / Astro Info Service Ltd (fcl/Apollo 7, fcl/Apollo 10, fcl/Apollo 11, fcl/Apollo 14, fcl/Apollo 15, cl/Apollo 8, cl/Apollo 12, cl/Apollo 16, cl/ Apollo 9, cl/Apollo 13, cl/Apollo 17). ESA: C. Carreau / ATG medialab (cr/Rosetta). NASA: JPL-Caltech (fbr); (fcl/Apollo clb, bl, bc, ca, cra, cr/Mariner 10, cr/Messenger, crb, br); ESA Alex Lutkus (fcr). 17 ESA: ISRO / ISAC (br). NASA: JPL-Caltech (ftr); NSSDC Photo Gallery (ftl/Luna 10); (tl/Apollo 15, tl/ Prospector); NASA's Goddard Space Flight Center (tl/Orbiter); NASA AMES / Corby Waste (tr/Surveyor); NSSDC (tr/Mariner 9 fcra); NASA AMES (fcr/Pioneer 11); JPL (fcl, c/Magellan, fbr); ESA (fcr/Cassini, c/Venus Express); (fclb, cb, fbl). courtesy Virgin Galactic: (br/SpaceShipTwo). 18 ESO: (bc); Digitized Sky Survey 2 (cla); Igor Chekalin (ca). Mike Lewinski: (fcla). NASA: CXC / SAO / F. Seward et al. (fcr/chandra); JPL-Caltech / R. Gehrz [University of Minnesota] (fcra); ESA / ASU / J. Hester (fcr); Swift /E. Hoversten, PSU (fcr/Nebula). NRAO : AUl (tr). The Library of Congress, Washington DC: (fcrb, bl). 19 Dr.Seth Shostak: (cl). ESA: Scott Ferguson (tc). ESA / Hubble: ESA, N Evans (Harvard-Smithsonian CfA), and H. Bond (STScl) (tc) polaris). ESO: Y. Beletsky (tr/venus); B. Tafreshi (twanight.org) (ftr). Mike Lewinski: (tr). NASA: (br); GSFC / James Spann (cla); JPL-Caltech / Space Dynamics Lab (cb); JPL-Caltech / UCLA / MPS / DLR / IDA (bl); ESA SOHO team (bc). NOAA: (cla/aurora7 cla/moondog, ca). 20 Dorling Kindersley: NASA (ca).
Dreamstime.com: Igor Chekalin (crb, bc); Mihai-bogdan Lazar (cla); Valerio Pardi (cl); Neutronman (c); Vladimir Il'yin (cr, bl); Sdrart (cb); Procyab (fbr). ESA / Hubble: NASA, ESA, Digitized Sky Survey 2 (br); NASA (cb/M71). NASA: ESA, and STScl (cra) 22 Dreamstime.com: Mihai-bogdan Lazar (cl); Neutronman (cra); Pere Sanz (c). ESA / Hubble: NASA, ESA, and the Digitized Sky Survey 2. Acknowledgment: Davide De Martin (cla); ESO, ESA / Hubble and Digitized Sky Survey 2: Davide De Martin (ca); NOAO / AURA / NSF (bl); David Malin (AngloAustralian Observatory). (bc); NASA, ESA, Z. Levay (STScl) and A. Fujii (br). 24-25 NASA: (c). 25 Dorling Kindersley: Stephen Oliver (crb). Dreamstime.com: Carla F. Castagno / Korat_cn (cra). ESO: Iztok Bončina / ESO (cl). Fotolia: Dario Sabljak (cr). / Steward / O. Krause et al and NRAO / AUI (fcra). The Library of Congress, Washington DC: (fbr). 26-27 Dorling Kindersley: The Science Museum, London (c). 27 Dorling Kindersley: The Science Museum, London (tc). Dreamstime.com: Derektenhue (cra); Vitalyedush (fcr); Zirconicusso (fcrb). The Library of Congress, Washington DC: (fbr). 29 Dorling Kindersley: Board of Trustees of the Royal Armouries (clb); Durham University Oriental Museum (cb). The Library of Congress, Washington DC: (bl). 30 Dorling Kindersley: The Natural History Museum, London (tl/Lithium, cla/Peridot, cb/Cerium); The Science Museum, London (cl/Strontium). Dreamstime.com: Robyn Mackenzie (cla/cheese). Fotolia: Bram J. Meijer (fcl). 31 Dorling Kindersley: Brett Critchley / BCritchley (c/lens); The Natural History Museum, London (ca/Diamond, cra/Fluorite); Stephen Oliver (ftr, cra/Scuba); The Science Museum, London (ca/ Microprocessor, fcr/Light bulb, cr/bromine, cb/Battery). Dreamstime.com: Nikkytok (clb/greenlight). Fotolia: Pablo H. Caridad (clb/Poison). 33 Alamy Images: Paul Fleet (cl). Dorling Kindersley: David Patterson and Bob Andersen (crb). Dreamstime.com: 3quarks (cr). Fotolia: Jose Gil (c); Eric Isselee (br). NOAA: Shawn Dahle, NOAA's Alaska Fisheries Science Center (ca). 41 PunchStock: (tr). 42 Dorling Kindersley: Blists Hill and Jackfield Tile Museum, Ironbridge, Shropshire (tr); The Science Museum, London (fcra, ca). The Library of Congress, Washington DC: (ftr). 43 Alamy Images: stu49 (cra). Dorling Kindersley: Ruth Jenkinson (bc); The Science Museum London (tl, cla). Dreamstime.com: Scanrail (crb); Stephen Vanhorn / Svanhorn 4245 (clb). Fotolia: Alexandr Mitiuc (tr The Library of Congress, Washington DC: Charles Milton (ca/ Herman). 44 Dorling Kindersley: The Shuttleworth Collection, Bedfordshire (br); Natural History Museum, London (tc); Durham University Oriental Museum (tr): The Museum of London (tc/spear); Vietnam Rolling Thunder (cb); The Science Museum, London (clb). 44-45 Dorling Kindersley: The Science Museum, London (c). 45 Dorling Kindersley: Maidstone Museum and Bentliff Art Gallery (tl); The Science Museum, London (c, cr, tr, cra); The Museum of English Rural Life, The University of Reading (tc). 50 Dorling Kindersley: John Mould (cla); Mark Surman (clb). 51 Dorling Kindersley: R. Florio (cr). 52 Dorling Kindersley: James Coward (br); Doubleday (cr). 52 Dorling Kindersley: James Coward (br); Doubleday
Swineshead Depot (fcla, fcl, cl, ca, c/PTO Shaft); Keystone

Tractor Works (c/Thieman, ftr/Moline); Rabtrak (c/YTO 180, crb/Felderman, fcrb/Soils 20); Derek Mellor (tc); Paul Rackham (bc, cra, fcrb/International T-20); Happy Old Iron, Marc Geerkens (crb/Georges Vidal); Robin Simons (fcra); Paul Holmes (fcr); Piet Verschelde (fbr). 53 Dorling Kindersley: James Coward (ca); Daniel Ward (ftl, tl, cla, fcra/McDonald mperial); Roger and Fran Desborough (tc, fcrb, fclb); The Shuttleworth Collection (tr); Andrew Farnham (fcla/Massey-
Harris); Mary and Brian Snelgar (cra); Lister Wilder (c); Robert Crawford (ftr); Happy Old Iron, Marc Geerkens (fcra/Paves America); Paul Rackham (fcla/Titan, fcr, fbl, clb, bc); Henry Flashman (bl); Richard Mason (fbr/Doe Triple-D); David Wakefield (fbr/JCB). 54-55 Fotolia: Yahia Loukkal (b). 54 Dorling Kindersley: DaimlerChrysler AG (fcl, clb). Fotolia: Masek (bl). 55 Dorling Kindersley: James River Equipment clb, crb); Yorkshire Air Museum (cl); James Rivers (br). 56-57 Dorling Kindersley: Railroad Museum of Pennsylvania (S12 Delticl. 56 Dorling Kind Raitway/ Science Museum Group Deltic). 56 Dorling Kindersley: Didcot Railway Centre (c/ King Edward II, br/GWR Hall Class); Virginia Museum of
Transportation (tr/Whitcomb, bc/VGN Class SA No. 4): The Transportation (tr/Whitcomb, bc/VGN Class SA No. 4); The National Railway Museum, York / Science Museum Group (c Rocket, bl/Wren, bl/Ner Clas XL No (Merddin Emrys); Nationa Railway Museum York (crb/LB \& SCR B1 Class, bl/Mallard): Ribble Steam Railway / Science Museum Group (bc/Hunslet Austerity); Harzer Schmalspurbahnen (br/DR Class 99.7376) 57 Dorling Kindersley: DB Schenker (cb/BR Class 92); Musee de Chemin de Fer, Mulhouse (tl/Bugatti Railcar); Harzer Schmalspurbahnen (tl/DR Class Kö, tc/GHE T1); Railroad Museum of Pennsylvania (tr/Type NWZ, cla/Conrail No. 2233 c/No. 800, c/PRR Class GG1); Didcot Railway Centre (tl/BR Class 08); Ribble Steam Railway / Science Museum Group (tc/BR Class 05, ca/D9500 Class 14, cra/Sentinel, cl/0-4-0); Virginia Museum of Transportation (tr/Norfolk and Western 41, ca/N\&W EMD GP9 Class); Eisenbahnfreunde Traditionsbahnbetriebswerk Stassfurt (cra/DR V15, cla/DR V60 cl/DR E04 clb/DR Class 243 br/Shunter). Hitachi Rail Europe (cb/Javelin); The Science Museum, London (bl/Puffing Billy). Dreamstime.com: Mamahoohooba (crb/Maglev). 58 Dorling Kindersley: Charlie Garratt (clb); Nigel Cocks (cra); The National Motorcycle Museum (cl, cl/Triumph Trophy TR6, c/Royal Enfield, clb/Ivy Three, fbl); Phil Crosby and Peter Mather (c); Micheal Penn (bl); Peter Hodson (bc). 58-59 Dorling Kindersley: The National Motorcycle Museum (ca); Wayne MacGowan (c). 59 Dorling Kindersley: Charlie Garratt (c); The National Motorcycle Museum (tc, cr, cb, bc); Brian Chapman and Chris Illman (tc/Weslake, fcrb/Mighty Mouse): Motorcycle Heritage Museum, Westerville, Ohio (tr, clb); George Manning (cla, ca, crb); Neil Mort, Mott Motorcycles (ca/Ducati); Justin Watson (cr/Honda); David Jones (cr/Moto guzzi); Ian Bull (br); National Motor Museum, Beaulieu (fcrb, bl). 60 Dorling Kindersley: Tony Agar (ca/Mosquito); Sarl Salis Aviation (tc/ DVII); Royal Airforce Museum, London (Hendon) (tc/FW 190, tr) ME262, tl/Pup, tc/Bulldog, ca/Spitfire, cla/S.E.5A, cla/Dolphin, cl/Vimy); Brooklands Museum (tl/Camel); Gatwick Aviation Museum (tc/P-38, c/B-25, c/Vulcan, clb/Wellington); Midlands Air Museum (tr/F-86); Commemorative Air Force, Mesa, Arizona (cla/Nieuport 17, clb/B-17); Paul Ford (cla/Dr 1); RAF Museum, Cosford (ca/Mustang); Planes of Fame Air Museum Chino, California (ca/A6M Zero, ca/Yak-9); Yorkshire Air Museum (cra/Hawker Hunter); Matthew Boddington (cl/B.E.2c ; RAF Battle of Britain Memorial Flight (c/Lancaster); Keith Warrington, Sutton Coldfield Model Makers Society (cl/JU87B); Pima Air and Space Museum, Tuscon, Arizona (cb/B-58A). 60-61 Dorling Kindersley: Royal International Air Tattoo 2011 (B-52). 61 Dorling Kindersley: Royal Airforce Museum, London Hendon) (cla/F-35 Lightning); Pima Air and Space Museum, Tuscon, Arizona (tl/Tomcat); John Wilkes, Model Exhibition Telford (tl/Harrier); Dave Gait (tc/Douglas DC3); Nationaal Luchtvaart Themapark Aviodome (tc/F27 Friendship); Brooklands Museum (tc/Concorde); Flugausstellung (tc/L-1049, ca/Comet 4C); Golden Apple Operations Ltd (ca/Stearman) The Real Aeroplane Company (cra/J/1N Autocrat, c/Pitts 51S); Philip Powell (cra/F177RG Cardinal); Richard Seeley c/Gipsy Moth); Hamblin Jet, Luton Airport (cr/Learjet 45); The Shuttleworth Collection (c/JetRanger); RAF Boulmer, Northumberland (cr/Sea King): Fleet Air Arm Museum (cb Westland Wessex, crb/Westland Lynx). Dreamstime.com: Patrick Allen / Ratmandude (cb/Bell UH-1); Wayne Mckown / Mckown (cl/B2); Darkmonk (cra/Airbus A380); Ivan Cholakov/ Icholakov (crb/Black Hawk). U.S. Air Force: Senior Master Sgt Joy Josephson (cl/A-10 Thunderbolt II). 62 Dorling Kindersley: Brooklands Museum (bl); City of Norwich Aviation Museum (cl); Flugausstellung (fclb). NASA: U.S Air Force (clb); (br). The Library of Congress, Washington DC: (cr). 63 Dorling Kindersley: Nationaal Luchtvaart Themapark Aviodome (tr); Roy Palmer (clb). Dreamstime.com: Darkmonk (br). The Library of Congress, Washington DC: (cb). U.S. Air Force: (c crb, bl). 64 Dorling Kindersley: Trek UK Ltd (ca). 65 Dorling Kindersley: National Cycle Collection (tl, tc, tr, cra, cla); (tr) Swift safety bicycle). 66 Dorling Kindersley: The Natural History Museum, London (ca, cb). 67 Dorling Kindersley: Natural History Museum, London (cra); Mike Read (cla). Dreamstime.com: Jeff Grabert / Jgrabert (cra/margay). Fotolia: Eric Isselee (ca). 68 Dorling Kindersley: Natural History Museum, London (fcl); Neil Fletcher (ftr); Booth

Museum of Natural History, Brighton (bl). Dreamstime.com Cammeraydave (cla/Snail); Musat Christian (fcla). Fotolia HandmadePictures (tr); Karl Bolf (cla). 69 Dorling Kindersley: Mark Hamblin (bl). 70 Dorling Kindersley: The Natural History Museum, London (cla/Dicroidium, c/Hexagonocaulon, crb) Fotolia: Beboy (tc). 71 Dorling Kindersley: The Natural History Fotolia: Beboy (tc). 71 Dorling Kindersley: The Natural History
Museum, London (cla, ca/Cooksonia, cr, clb); Swedish Museum Museum, London (cla, ca/Cooksonia, cr, clb); Swedish Museum
of Natural History (fcra, fcr); Oxford Museum of Natural History (cl). 72 Dorling Kindersley: Instituto Fundacion Miguel Lillo Argentina (bl); The Natural History Museum, London (cla/ Lepidodendron, fclb); Natural History Museum, London (fcla, ca, fcl, c/Cretaceous Cone, clb, bc, cra/Bryozoan, fcra Natural History (cb). 72-73 Dorling Kindersley: Senckenberg Gesellshaft Fuer Naturforschugn Museum (b). 73 Dorling Kindersley: The American Museum of Natural History (cla) The Natural History Museum, London (fcl); Natural History Museum, London (cl, c/vertebrae, c/Pliosaur Skull, ca/ Mammal-like Skull, c/Mammuthus, cb, cra/Tooth, crb/Frog crb/Baryonyx theropod dinosaur, fcr); State Museum of Nature Stuttgart (cra/Plateosaurus); Oxford Museum of Natural History (bc, tr); Sedgwick Museum of Geology, Cambridge (fcra). 75 Dorling Kindersley: Jon Hughes (cla/Titanosaurus, bc). 78 Dorling Kindersley: Jon Hughes and Russell Gooday (cra, cr, bc/Placodus, br/Lariosaurus); Jon Hughes (cla, cla) Peteinosaurus, c, clb, bc, bc/Mixosaurus, fcrb/Liopleurodon br/Ichthyosaurus, br/Temnodontosaurus, fbr/Geosaurus Peter Minister and Andrew Kerr (fcla, cl); (crb, fcrb, bc) Shonisaurus). 79 Alamy Images: Elvele Images Ltd (tr) Dorling Kindersley: Jon Hughes and Russell Gooday (cla, cla/ Sphenosuchus, ca, fcr, clb); Natural History Museum, London (tc); Jon Hughes/Bedrock Studios (cr, bl/Kronosaurus); Jon Hughes (crb, fclb, bl, cb, crb/Ischyodus). 82 Getty Images: Martin Harvey / Photodisc (c). 83 Dreamstime.com: Chonlawut Brahmasakha (bl); Xianghong Wu (fbl); Whiskybottle (bc). Getty Images: (cr). 84 Dorling Kindersley: Chris Gibson (cb). 90 Dorling Kindersley: Linda Pitkin (fcrb/Aesop). 91 Dorling Kindersley: Linda Pitkin (fcl/Porcelain, cl/Hermit crab, clb/ slipper, clb/marble, cb/squat, bl, bc); Linda Pitkin / lindapitkin net (cl/Panamic); Jerry Young (crb/Pill). Dreamstime.com: Olga Demchishina / Olgysha (fclb/Mantis). 92 Alamy Images: Brand X Pictures / Brian Hagiwara (cl/June). Dorling Kindersley: The Natural History Museum, London (cl/Weevil, cr/Longhorn, cb fcr, clb/Weevil, fcrb); Jerry Young (c/jewelled). Dreamstime. com: Isselee (fclb); The Natural History Museum, London (bl/ bush). 93 Dorling Kindersley: Forrest L. Mitchell / James Laswel (cla/Clubtail, ca/Comet, ca/Flame, cra, cl/Gray, c/ Baskettail, cb/River); The Natural History Museum, London (ftr, cla/Damselfly, crb/Giant Hawker, fcra, fcr, fcr/Tiger, fcrb); Neil Fletcher (crb/damsel); Oxford University Museum of Natural History (fclb). Dreamstime.com: Ryszard Laskowski / Ryszard (tl/Army ants). 94-95 Dorling Kindersley: The Natural Histor Museum, London (All Images). 96 Dorling Kindersley: Linda elegans) Dreamstime com: Jannekespr (cr/lipped) NOAA elegans). Dreamstime.com: Jannekespr (cr/tipped). NOAA:
Estuarine Research Reserve Collection (cra). 96-97 Dorling Kindersley: Linda Pitkin (t). 97 Dorling Kindersley: Linda Pitkin (tc/hare, ca/Variable Neon, crb/Bigfin); Richard Ling (cra/ Cuttlefish). Dreamstime.com: Selahattin Ünsal Karhan (c/ Trumpet). 98 Dorling Kindersley: Marc Bosch Mateu (fcl/ Meagre); Linda Pitkin (tc/bluestripe, fcla/seahorse, fcla/mullet, cl/Parrotfish, fcra/box, cra/Lizardfish, clb); The Weymouth Sea Life Centre (fclb/stonefish). Dreamstime.com: Andylid (tl/ Turbot); Lunamarina (ca/Bluefish); Eric Isselée / Isselee (cr) Asther Lau Choon Siew / Pufferfishy (fclb/Gurnard). Fotolia: Asther Lau Choon Siew / Pufferfishy (fclb/Gurnard). Fototia
uwimages (cb/anemone). 98-99 Dorling Kindersley: Terry uwimages (cb/anemone). 98-99 Dorling Kindersley: Terry
Goss (cb). 99 Dorling Kindersley: Frank Greenaway (ftr); Linda Pitkin (cl); Jerry Young (tl, ca/Catfish). Dreamstime.com: Stefan Hermans / Perrush (tr/goldfish); Peter Leahy / Pipehorse (ftl/trumpet); Stephan Pietzko / Pilens (fcrb/Burbot); Tonny Wu (cb). 100 Dorling Kindersley: Linda Pitkin (crb); Brian Pitkin (cla). 101 Dorling Kindersley: Dr. Peter M Forster (crb). Dreamstime.com: Greg Amptman (fbr); Dongfan Wang / Tabgac (cr); Yobro10 (crb/Southern stingray). 104 Dorling Kindersley: Dr. Peter Janzen (cla, cla/leaf frog, cla/Splendid leaf frog); Peter Janzen (ca, cra); Twan Leenders (c, clb, clb/Red). 105 Dorling Kindersley: Twan Leenders (ftr, fcra, ca, cr); Jan Van Der Voort (fcl); Ignacio De la Riva (cl). Dreamstime.com: Kamnuan Suthongsa (fcrb). 106 Dorling Kindersley: James H.
Harding (tr/Blanding); Twan Leenders (cla); Jerry Young (fcla, Harding (tr/Blanding); Twan Leenders (cla); Jerry Young (fcla,
c/Red-legged, crb/hinge); Jan Van Der Voort (cr/Spur-thighed); The Natural History Museum, London (br). Dreamstime.com: Amwu (cb/Elongated); Torsten Kuenzlen / Kuenzlen (tc/ Loggerhead); Am Wu / Amwu (cra). 107 Dorling Kindersley: Twan Leenders (cra/Terrapin); Jerry Young (ft, bc/Kinixys). Dreamstime.com: Amwu (fcra). Getty Images: Photographer
Choice RF / Peter Pinnock (bc). 108 Dorling Kindersley: Twan Choice RF / Peter Pinnock (bc). 108 Dorling Kindersley: Iwan
Leenders (cb). Dreamstime.com: Amwu (clb). 108-109 Dorling Kindersley: Andy and Gill Swash (cb). 109 Dorling Kindersley: Twan Leenders (crb, crb/Percival's Legless Skink, fcrb).
Dreamstime.com: Iulian Gherghel (bc). Fotolia: Eric Isse Dreamstime.com: Iulian Gherghel (bc). Fotolia: Eric Isselee (fcra). 111 Dorling Kindersley: Twan Leenders (cra/Rough); Jan
Van Der Voort (cl/Orsini's). Dreamstime.com: Wahyudinfirman (tc, tr, ftr). 112 Dreamstime.com: Mikhail Blajenov (c). 113 Dorling Kindersley: Jerry Young (fcr/dwarf). Dreamstime.com: Lukas Blazek (t); Nico Smit / Ecophoto (fcrb); Edurivero (cl).

114-115 Dorling Kindersley: The Natural History Museum, London (All Images). 116 Dorling Kindersley: Greg and Yvonne Dean (cb); E. J. Peiker (fcra); The National Birds of Prey Centre Gloucestershire (crb); Jari Peltomaki (cla, clb); Markus Varesvuo (ca); Brian E. Small (cra, cl/runner, br); Barry Hughes (cl); Roger Tidman (bc, fbr). Getty Images: Frank Krahmer/ Photographer's Choice RF (fbl). 117 Dorling Kindersley: Mike Danzenbake (cl/swift); The Natural History (fsum, London (cra); E.J. Peiker (c, cr); Andy and Gill Swash (fcl); Mike Danzenbaker (cl/LUCIFER); Mike Read (c/tody); Tomi Muukkonen (clb); Markus Varesvuo (crb, fbl); Garth McElroy (crb/duck); Melvin Grey (bl, clb/gallinule); Chris Gomersall Photography (crb/puffin); Brian E. Small (br, br/warbler, fbr); Mike Lane (br/skylark). 118 Dorling Kindersley: Chris Gomershall (fcr); The National Birds of Prey Centre, Gloucestershire (c, fcr/Harris hawk, cb/egyptian); Hanne and Jens Erikson (cra); Metvin Grey (br). Dreamstime.com: Isselee (c/Bald Eagle). 119 Dorling Kindersley: Greg and Yvonne Dean (fcrb, fbr); E. J. Peiker (c); E.J. Peiker (clb); The National Birds of Prey Centre, Gloucestershire (fclb, bl); Andy and Gill Swash (bc); Jari Peltomaki (tr); Bob Steele (cla, cr, bc/whet); Barry Hughes (cl); Brian E. Small (cb, br); Mark Hamblin (cb/short); Markus Varesvuo (crb). 120 123RF.com: mycteria (crb). Dorling Kindersley: The Natural History Museum, London (cla); Evgeniya Moroz (cl/peacock). Dreamstime.com: lakov Filimonov (bl); Irisangel (br). 121 Dorling Kindersley: Barnabas Kindersley (bc). Dreamstime.com: David Medina claesson (br); Vtorous (fcr); Smileus (bl); Kruglik (bl/bluebird); Picstudio (br/kingfisher). 122 Dorling Kindersley: The Natural History Museum, London (cla). 123 Dreamstime.com: Torsten Kuenzlen / Kuenzlen (crb). Fotolia: Chrispo (cr). 124 Dorling Kindersley: Greg and Yvonne Dean (cb/Sun); Exmoor Zoo Devon (fcra). Fotolia: Eric Isselee (crb). 124-124 Dorling Dorling Kindersley: The Booth Museum of Natural History, Brighton (fcr/Hopi); Rebecca Dean (fcl/african); E.J. Peiker Brighton (fcr/Hopi ; Rebecca Dean (fcl/african); E.J. Peik
(c/harrisii); Drusillas Zoo, Alfriston, West Sussex (fbr). Dreamstime.com: Per Björkdahl (cra/lemming); Eduard Kyslynskyy (cra); Dule964 (cra/Dormouse); Martha Marks (fcrb/ prairie). 126 Dorling Kindersley: Greg and Yvonne Dean (cra/ Pig-tailed); Jerry Young (tr/Capuchin, ca/Cotton-top, fcra/ Marmoset). Dreamstime.com: Daniel Bellhouse (cl); Eric Isselee (cra/Pygmy). 127 Dorling Kindersley: Andy and Gill Swash (ca/Toque); Jerry Young (ftl). Dreamstime.com: Lin Joe Yin / Joeyin (fcl/Gibbon). Fotolia: Eric Isselee (cl/Pileated Gibbon). 128 Dorling Kindersley: Prof. Marcio Motta (cr): Wildlife Heritage Foundation, Kent, UK (br). Dreamstime.com: Rafael Angel Irusta Machin / Broker (ca); Isselee (b). 129 Dorling Kindersley: Berlin Zoo (cr); Wildlife Heritage Foundation, Kent, UK (c, cl, bl, bc); Blackpool Zoo, Lancashire,
UK (crb). Dreamstime.com: Jeff Grabert UK (crb). Dreamstime.com: Jeff Grabert / Jgrabert (cra); Outdoorsman (cr/Canadian lynx). Fotolia: Shchipkova Elena (br). 131 Dorling Kindersley: The Tank Museum (cl). 132 Dorling Kindersley: The Natural History Museum, London (cla, cl, cra/tortoise, c, cb, cb/Crow); Booth Museum of Natural History, Brighton (cra, fbr). 133 Dorling Kindersley: The Natural History Museum, London (tr, fcrb, crb). Fotolia: giuliano2022 (tc/Rhinocer). 134 Dorling Kindersley: Jerry Young (tr). 136 Dreamstime.com: Ekaterina Cherkashina Katerinache (cra/Munchkin). 137 Dreamstime.com: Eric Isselée / Isselee (clb/persian). 138 Dorling Kindersley: Haras National de Saint Lo, France (cl/Norman Cob). Dreamstime. com: Isselee (br). 139 Fotolia: Jan Will (bl/Zebra). 140 Dorling Kindersley: Barleylands Farm Museum and Animal Centre, Billericay (tr, ca, fcra); South of England Rare Breeds Centre, Ashford, Kent (cla, br); Cotswold Farm Park, Gloucestershir (crb). Fotolia: Eric Isselee (clb). 140-141 Dorling Kindersley Barleylands Farm Museum and Animal Centre, Billericay
(c). 141 Dorling Kindersley: Barleylands Farm Museum and (c). 141 Dorling Kindersley: Barleylands Farm Museum and
Animal Centre, Billericay (cla); South of England Rare Breeds Centre, Ashford, Kent (tl, cla/pig); Odds Farm Park, High Wycombe, Bucks (cr). 142 Alamy Images: Big Pants Productions (fcr). Dorling Kindersley: Jerry Young (fcra). Dreamstime.com: Inga Nielsen (ca); Svehlik21 (cra). 143 Alamy Images: Photofrenetic (fclb). Dorling Kindersley: Cotswold Wildlife Park (fcl); Andy and Gill Swash (c/Coyote); Jerry Young Wildlife Park (fcl); Andy and Gil Swash (c/Coyote); Jerry
(c, cl/Mandarin Duck); E. J. Peiker (cb); Natural History Museum, London (crb). Dreamstime.com: Anton Kozyrev (br); Urospoteko (fcla); Jnjhuz (clb); Ijacky (bl). Fotolia: Eric Isselee (ca). 144 Dorling Kindersley: Natural History Museum, London (tr); Jerry Young (ca/Red Eyed Tree Frog). Dreamstime.com:
Eric Isselee (cra): Isselee (ca); Kira Kaplinski / Kkaplin (clb). Eric Isselee (cra); Isselee (ca); Kira Kaplinski / Kkaplin (clb)
145 Alamy Images: Life on White (clb). Dorling Kindersley Natural History Museum, London (ca, ca/Tawny Rajah, cl); Jerry Young (ftl, cla/Black spider monkey, cl/Nymph, cb); Twan Leenders (cr). Fotolia: Eric Isselee (cla). 146 Dreamstime.com: Anankkml (tr); Ryszard Laskowski (c). Fotolia: Andreas Altenburger / arrxxx (cra). 146-147 Dorling Kindersley: Jerry Young (bc). 147 Dorling Kindersley: Cotswold Wildlife Park (cra). Fotolia: Shchipkova Elena (clb). 148 Dorling Kindersley: Jerry Young (ca, cr). Dreamstime.com: Smellme (ftr); Stefan
Gottschild (br). Fotolia: Steve Lovegrove (fcrb). 149 Dorling Kindersley: E. J. Peiker (cla). 150 Corbis: (cra). Getty Images: Sandy Carey, Photodisc / Alan (br). 150-151 Dreamstime.com: Steven Oehlenschlager (bc). 151 Dorling Kindersley: Drusillas Zoo, Alfriston, West Sussex (bc); Jerry Young (tl). Dreamstime. com: Achim Baqué (cr/leopard seal); Helen Panphilova /

Gazprom (cla); Vladimir Seliverstov / Vladsilver (fcr); Isselee (bl). Fotolia: Stefan Zeitz / Lux (cb). Getty Images: Joel Sartore Pitkin (tr, ca/cuttlefish, tr/seahorse, c). 152-153 Dorling Kindersley: Rick Hibpshman (b). 153 Dorling Kindersley: The Weymouth Sea Life Centre (fcla); Linda Pitkin (tc, tc/Seamoth, tl, tc/Sea strawberry, ca, cla); Linda Pitkin / Lindapitkin.net (tc/ arrow crab); Terry Goss (cla/Tiger Shark); Natural History Museum, London (ca/Horseshoe Crab). Dreamstime.com Jamiegodson (c); Teguh Tirtaputra / Teguhtirta (cb); Dejan Sarman / Dejan750 (crb). 154 Dorling Kindersley: Linda Pitkin/
lindapitkin.net (br). Dreamstime.com: Carol Buchanan (cra). 154-155 Dorling Kindersley: Dr. Peter M Forster (c). 155 Alamy Images: Martin Strmiska (br). Dorling Kindersley: The Goldfish Bowl (cr/Jewelfish). Dreamstime.com: Eric Isselee (clb/Hermit crab); Krzysztof Odziomek / Crisod (tc); Tazdevilgreg (c/Coral crab); Krzysztof Odziomek Crisod (tc); Tazdevilgreg (c/Co
Trout). 156 Dorling Kindersley: Natural History Museum, London (cra, cb). 157 Dorling Kindersley: Planetary Visions Ltd (crb). Dreamstime.com: Dan Breckwoldt / Danbreckwoldt (cla) Fotolia: Mark Higgins (cra/kangaroo). Getty Images: Dene' Miles (ca). 158 Dreamstime.com: Staphy (bc). 159 Dreamstime com: Yury Tarasov / Sportfoto (bc). Fotolia: Galyna Andrushko bc/peak). 160 Dreamstime.com: Jason Yoder / Jasony00 (br) 161 Dorling Kindersley: Museo Archeologico Nazionale di Napoli (br); NASA (bc/Volcano erupting on lo). 165 Dreamstime.com: Vera Golovina (br). 166 Dorling Kindersley: The Natural History Museum, London (cl/magnetite, fclb/ Hornblende, bc/Corundum, fbr); The Science Museum, London (cla/Pumice). 167 Dorling Kindersley: The Natural History Museum, London (cb/Proustite); The Oxford University Museum of Natural History (cl/diamond). 168-169 Dorling Kindersley: The Natural History Museum, London (All images) 169 Dreamstime.com: Leon Rafael / Lrafael. 172-173 Dorling Kindersley: Planetary Visions Ltd (c). 173 Dreamstime.com: Jeremy Richards (cra). NASA: (bc, br); (fbr). 174 Corbis: Warren Faidley (fcra). Dreamstime.com: Amnemcova (cr/Snow storm); Sergey Galushko / Galdzer (cla); Gina1111 (ca); Victor Zastol`skiy / Vicnt (cra/Tornado); Dexigner (cl/Heatwave); Ollirg (cl/Drought); Anizza (c); Antares614 (cr/Hailstorm). NOAA: Carrie Smith / NOAA Central Library (fcr). U.S. Geological Survey: (ca/flood); Seth Munson (fcl). 176 Alamy Images: Travelib Africa (clb). 177 Alamy Images: Hugh Threlfall (cra). Dorling Kindersley: Dr. Peter Janzen (ca/frog). Fotolia: Scanrail (cra/globe). 182 Dorling Kindersley: Barnabas Kindersley (cla). 183 Dreamstime.com: Byjeng (cra). 185 Dorling Kindersley: Jerry Young (ftr). 186 Corbis: DLILLC (bc). Dreamstime.com: Misha Shiyanov / Kertis (cl). 187 Dorling Kindersley: Philip Dowell Chrishowey (bc). 190 Dreamstime.com: Jeremy Richards (clb). 191 Fotolia: Eric Isselee (clb). PunchStock: Digital Vision (cr). 193 Dreamstime.com: Dmitry Pichugin / Dmitryp (br); Callan Chesser / Ewanchesser (tc); Bin Zhou / Dropu (bc). Fotolia: Mark Higgins (cra); Eric Isselee (tr). 194 Dorling Kindersley: The Royal Geographical Society, London (cla); The National Maritime Museum, London (clb). Dreamstime.com: Staphy (bl, bc). 195 Dorling Kindersley: Alan Burger (cra/seal); Arctic Trucks / Gisli Jonsson (tc). Dreamstime.com: Xavier Marchant / Xaviermarchant (cr); Jan Martin Will / Freezingpictures (tr/ Adelie penguin). Getty Images: Dene' Miles (cra); David Tipling / Digital Vision (tr). 198 Alamy Images: Hugh Threlfall (cb). Dreamstime.com: Elena Elisseeva (cl/soya); Igor Marx (cl); Mafoto (cb/Triticale); Mateno (clb). 199 Dorling Kindersley: Odds Farm Park, High Wycombe, Bucks (clb/pig). 200 Dorling Kindersley: Blandford Fashion Museum (ca/Straw hat); Musee du Louvre, Paris (ca/Mona Lisa). Dreamstime.com: Anky10 (clb); Vtupinamba (ca); Goncharuk Maksym (cr). 201 Dorling Kindersley: Barnabas Kindersley (ca); University of Pennsylvania Museum of Archaeology and Anthropology (cla); The Shoe Museum (cla/Lower heel); The Royal Academy of
Music (cb); Durham University Oriental Museum (fclb). 202 Dorling Kindersley: Barnabas Kindersley (crb); Stephen Oliver (bc). Dreamstime.com: Murali Nath / Muralinath (fcr); Silentiger (fcl). 203 Dorling Kindersley: Central London Ghurdwara (cb); The Zoroastrian Trust Funds of Europe (cr); Pitt Rivers Museum, University of Oxford (bc); Barnabas Kindersley (bl). 204 Dorling Kindersley: Barnabas Kindersley (bl). Dreamstime.com: Gino Santa Maria (tr); Patrick Poendl cb). Fotolia: Anatolii (cl). 205 Dreamstime.com: Jamen Percy (tc); Sergey Tsvirov (c); Laura Stone (cr). 208 Dorling Kindersley: Andy Crawford (bl, bl/Star-shaped pendant) University Museum of Archaeology and Anthropology, Cambridge (tc, tr); National Museum of Wales (tc/Stone-Age painting); Musee National du Moyen-Age Thermes de Cluny (cl) Museum of the Order of St John, London (ca); The American Museum of Natural History (fcr); Musee du Louvre, Paris (clb); The National Music Museum (bc); University of Pennsylvania Museum of Archaeology and Anthropology (tr/Ornament, fcra). Dreamstime.com: Hasan Can Balcioglu (fcl); Steve Estvanik (c). 209 Dorling Kindersley: The University of Aberdeen (cla); University of Pennsylvania Museum of Archaeology and Anthropology (ftl, tc, tc/Ancient Egypt Shabti); Ure Museum of Greek Archaeology, University of Reading (tr); Durham University Oriental Museum (ca, ca/Mummy mask, cl, c, c/ Buddha); Wallace Collection, London (c/Ornate Elephant); Villa Giulia and Beniculturali (cr). Dreamstime.com: Rolffimages bc/Expression). 210 Dorling Kindersley: The Bate Collection (bc/Expression). 210 Dorling Kinderstey: The Bate Collection
(cl/Clarinet, cr/Bugle); The Powell-Cotton Museum, Kent (bc).

211 Dorling Kindersley: The Bate Collection (c/Viol); The Royal Academy of Music (fcl, c). Dreamstime.com: Karam Miri (cb). Getty Images: Stockbyte (crb/Ukulele). 214 Dorling Kindersley Andy Crawford (cl, c). Dreamstime.com: Afxhome (cla); Hongqi Zhang laka Michael Zhang) (cra). 215 Dorling Kindersley: Blandford Fashion Museum (cra/tango shoes). Dreamstime. com: Anky10 (fcr); Goran Bogicevic (cra); Stable400 (fcra) Derek Tenhue / Derektenhue (fcra/Ballroom); Samotrebizan (cra/samba, fcra/cha cha); Viorel Sima (cr). 216 Dorling Kindersley: Etablissement public du musee et du domaine national de Versailles. Reunion des Musees Nationaux / Ar Resource, NY. (fcl); Etablissement public du musee et du domaine national de Versailles (cla); The Royal Ballet School (ca). Dreamstime.com: Jackq (fcra). 218 Dorling Kindersley: Lydia Evans / Rough Guides (crb); Pompidou Centre (br). Dreamstime.com: Chrisharvey (cr); Sergii Figurnyi / Bloodua (tc); Konstantin32 (cl). 219 Dorling Kindersley: Demetrio Carrasco / Rough Guides (fcr); Photos By Chris Christoforou Rough Guides (tl); Tim Draper / Rough Guides (ftr, bl). Dreamstime.com: Yykkaa (bc). 220 Dorling Kindersley: Pennsylvania Museum of Archaeology and Anthropology (ca). 221 Fotolia: Derya Celik (ca). 225 Dreamstime.com: Vtupinamba (cla). iStockphoto.com: Vasko Miokovic (cra) 226 Getty Images: Creativ Studio Heinemann (fcl/Black cl. 227 Getty Images: Foodcollection (c/Damson) 229 Getty Images: felipedupouy.com / Photodisc (bl). 230 Dorling Kindersley: Westcombe Dairy (ftl, tl, tc). 231 Dreamstime.com Malgorzata Kistryn (tl). Fotolia: Eric Isselee (bl). 232 Dorling Kindersley: Barnabas Kindersley (cb/Mantou). 234 Dreamstime.com: Bert Folsom (crb). 236 Dreamstime.com: Deepcameo (c). 237 Dorling Kindersley: The Natural History Museum, London (clb/sea urchin). 240 Dorling Kindersley Blandford Fashion Museum (cl, bl, cb, bc); Ermine Street Guard (ca); The Shoe Museum (c, c/brogues); Contemporary Wardrobe (c/Tweed Cap); Tim Parker (cb/jacket). 241 Dorling Kindersley: Banbury Museum (tr/waistcoat, fcr); Blandford Fashion Museum (tc, fcl, fcl/swim cap); Central Saint Martins c, c/Jacket, c/Cloak, cr). Dreamstime.com: Verkoka (br). Getty mages: Photodisc (bc). 242 Dorling Kindersley: Angels Fancy Dress (tr/day dress, fcrb, fbr); The British Library (tr/handbag); Banbury Museum (c/pamphlet); Blandford Fashion Museum fcla, fcl, cl/shoes, cr/evening dress, cr/floral dress, cr/gloves, cr/hat, bc/handbag, bc/shoes). 243 Dorling Kindersley: Angels Fancy Dress (bc/dress); The Shoe Museum (tl/red footwear, l/high-heeled shoe, tl/silk boot, cla/slipper, fcl/shoe, cr/high heel); Blandford Fashion Museum (ftl/dress front, ftl/dress back, tr/dress, tr/fan tr/corset fcl/blue dress fcl/hat cl/white dress, $\mathrm{cl} /$ shoes, $\mathrm{cr} / \mathrm{corset}, \mathrm{cr} /$ handbag, $\mathrm{fbl} /$ hat); Museum of oondon (fcl/red dress); Worthing Museum and Art Gallery (fbl/shoes); Christian Dior (br/bag). Dreamstime.com: Georgii Dolgykh / Gdolgikh (fbr/lady); Toxawww (clb). 246 Dorling Kindersley: Stephen Oliver (br). Dreamstime.com: John Kasawa (bl); Mikumistock (cl). Fotolia: Gudellaphoto (c). 247 Dreamstime.com: Dmitry Grushin (tr); Olaf Speier (ftl). Getty Images: Burazin / Photographer's Choice RF (bl). 250 Getty Images: Burazin / Photographer's Choice RF (ca). 258 Dorling Kindersley: Stephen Oliver (crb). 264 Dreamstime.com: Vladimir Ovchinnikov (br). 270 Dorling Kindersley: Leeda Fishing Tackle, UK (cla, ca). 271 Dorling Kindersley: Leeda Fishing Tackle, UK (crb/Deer Hopper). Dreamstime.com Nataliya Evmenenko (ftr); Bidouze Stéphane (tr). 279 Dorling Kindersley: Davenport's Magic Kingdom (fcr). 280 Dorling Kindersley: Pegasus Stables, Newmarket (c); W\&H Gidden Ltd (cr). 282 Dorling Kindersley: The Board of Trustees of the Royal Armouries (cb); Vikings of Middle England (cla); University of Pennsylvania Museum of Archaeology and Anthropology (ca, cra, clb); The Tank Museum (crb); Durham University Oriental Museum (cb/fan, cb/Glass bowl). Dreamstime.com: Ks2008q ca/coin). 283 Dorling Kindersley: Anthony Barton Collection (cb/lute); The National Railway Museum, York / Science Museum Group (ca); The Tank Museum (ca/tank); Egyptian Museum, Cairo (cra); Eden Camp Museum, Yorkshire (cb) Whipple Museum of History of Science, Cambridge (cla); Natural History Museum, London (fcra); Durham University Oriental Museum (shoes). 284 Dorling Kindersley: Natural History Museum, London (crb, bc, br); Oxford Museum of Natural History (cb). Pitt Rivers Museum University of Oxford (ftr, tr, cr); The Science Museum, London (fcr). 285 Dorling Kindersley: Pennsylvania Museum of Archaeology and Anthropology (tc/Clovis projectile point); National Museum of Wales (bl); Natural History Museum, London (tc/Harpoon, tc/Manmade barbed tool, bc/'Venus' Figurine); The Museum of London (tc/Adze head, ca, c); University Museum of Archaeology and Anthropology, Cambridge (cb, cb/piece of Bone, bc, br). 286 Dorling Kindersley: Durham University Oriental Museum (clb): University of Pennsylvania Museum of Archaeology and Anthropology (cb, br). 287 Dorling Kindersley The University of Aberdeen (tr); The Science Museum, London (cla); University of Pennsylvania Museum of Archaeology and Anthropology ltc, tc/Silver bowl, ftr, ca, ca/scorpions= design cup, ca/Cylinder seal, cra, bc, cr, cr/Necklace, bc/Bead belt br). 288 Dorling Kindersley: Egyptian Museum, Cairo (tr) Anthropology (crb); Durham University Oriental Museum (fbl) left, fbl/right, bl, bc). 289 Dorling Kindersley: The University eft, fbl/right, bl, bcl. 289 Dorling Kinderstey: The Univers

Museum, London (cra/ointment slab); University of Pennsylvania Museum of Archaeology and Anthropology (cra/bead collar, cr/cat); Newcastle Great Northern Museum Hancock (cr/arrowheads, b); Durham University Oriental Museum (cr/girl, crb, clb/amulet); Ure Museum of Greek Archaeology, University of Reading (c); Ashmolean Museum Oxford (clb/earring, cb/rings). 290 Dorling Kindersley: 4 hoplites (bl/Stove); Geoff Garvey / Rough Guides (tl); The University of Aberdeen (cl/Athenian Coin, c/Alexandrian Coin); National Archaeological Museum, Athens (cl/Knossos Coin); Newcastle Great Northern Museum, Hancock (clb/Plate, cb/Earring); Wellcome Institute / Science Museum, London (clb/Pot); Ure Museum of Greek Archaeology, University of Reading (clb/Jug, bc); University of Pennsylvania Museum of Archaeology and Anthropology (fbl/Powder Box). 291 Dorling Kindersley: 4 hoplites (c, cr, crb, cb, bc, br); Hellenic Maritime Museum (ftl); Canterbury City Council, Museums and Galterie (tl); Mark Thomas / Rough Guides (bl). 294 Dorling Kindersley Angels Fancy Dress (r); Ermine Street Guard (fcl, fclb, cl/ Scabbard, cl/Gladius, c). 295 Dorling Kindersley: The University of Aberdeen (fcra/Coin); Newcastle Great Northern Museum, Hancock (tc/Colander); Stephen Oliver (tc/Flask); University of Pennsylvania Museum of Archaeology and Anthropology (tr/Ring); Canterbury City Council, Museums and Galleries (tr/Bottle). 296 Dorling Kindersley: Danish National Museum (cb); Vikings of Middle England (ca). 297 Dorling Kindersley: Andy Crawford (br); The Universitets Oldsaksamling, Oslo (tr); Vikings of Middle England (clb, ca, cb $\mathrm{cb} /$ dagger, cr, bl, bl/arrows, bc, fbr). 298 Dorling Kindersley: Sarah Cummins / Rough Guides (cb); Roger D'Olivere Mapp Rough Guides (clb); Tim Draper / Rough Guides (crb). 299 Dorling Kindersley: The University of Aberdeen (tl, clb/Jade Mask, clb/Frog, clb/Jadette Figure); Tim Draper/Rough Guides (fcla, cla); Suzanne Porter / Rough Guides (ca); University of Pennsylvania Museum of Archaeology and Anthropology (ftl fclb/Jaguar Mask, fbl/Pitcher, bl/Stirrup Pot, bl/Vase, cb, bc fclb/Jaguar Mask, fbl/Pitcher, bl/Stirrup Pot, bl/Vase, cb, bc
crb, fcrb). 301 Dorling Kindersley: Board of Trustees of the Royal Armouries (cb/boot); University of Pennsylvania of the Royal Armouries (cb/boot); University of Pennsylvania
Museum of Archaeology and Anthropology (clb/Tile, bl); The Board of Trustees of the Royal Armouries (ftr, tc/chichak, tc cra, c, c/dagger, c/sword, cr); Durham University Oriental Museum (clb, c/Breastplate, fbr). Dreamstime.com: Ahmet Ihsan Ariturk (cl). 302 Dorling Kindersley: The Board of Trustees of the Royal Armouries (fclb/helmet, clb/Helmet, cb/ Scabbard, cb/Indian, crb/Talwar, fcrb, fcrb/Tongi, fclb, clb, bl. bl/tabar); The English Clvil War Society (cb); Canterbury City bl/tabar); Me English Clvil War Society (cb); Canterbury City
Council, Museums and Galleries (cb/handgrip, cb/Gauntlet Sword, crb/Firangi); Durham University Oriental Museum (br) Sword, crb/Firangi); Durham University Oriental Museum (br),
303 Dorling Kindersley: The City Palace Museum, Jaipur (br); Durham University Oriental Museum (cb, bc/Khanjar, bc/ pendant, bc/Jade). 304 Dorling Kindersley: Maidstone Museum and Bentliff Art Gallery (r); Durham University Oriental Museum (cl, clb, bl). 305 Dorling Kindersley: Courtesy of Durham University Oriental Museum (tc, tc/screen fan, ca/ Wrestler's netsuke, ca/bowl); Durham University Oriental Museum (fcl, cl, cl/Spear, ca, ca/Cast iron kettles, ca/Incense burner, tr, crb, br, fbr). 306 Dorling Kindersley: Tim Draper / Rough Guides (ca/City); Durham University Oriental Museum (tl/Beaker, cla/Pot, clb/Horse, clb/Vase, bl/Plate). Getty Images: Ingo Jezierski / Photodisc (ca/Army). 306-307 Dorling Kindersley: Tim Draper / Rough Guides. 307 Dorling Kindersley: Durham University Oriental Museum (cb/Puzzle crb/Pendants, fbl/Bottle, fbl/Caddy, bl/Bowl, bc/Teapot, br); The Science Museum, London (cl/Earthquake Detector, c); University of Pennsylvania Museum of Archaeology and Anthropology (clb/Camel). 308 Dorling Kindersley: Anthony Barton Collection (clb, clb/harp, cb, cb/hornpipe); Tsaravets of the Royal Armouries (r). 309 Dorling Kindersley: Royal Armouries, Leeds (ca); The Wallace Collection, London (cla); The Combined Military Services Museum (CMSM) (cra, cb, cb/ mercy, cb/dagger, crb, crb/war hammer, crb/cannon, cra/ Burgonet); Robert Harding (fcrb/Church); Stephen Oliver (fcrb) The London Dungeon (bl, bc, br). 311 Dorling Kindersley: The Board of Trustees of the Royal Armouries (cla); Cotswold Farm Park, Gloucestershire (clb, crb, bc); The Order of the Black Prince (cl, bl). 312 Dorling Kindersley: Board of Trustees the Royal Armouries (br); Thackray Medical Museum (cb); The Science Museum, London (crb); Whipple Museum of History of Science, Cambridge (fcrb); The Combined Military Services
Museum (CMSM) (bc). 313 Dorling Kindersley: The Bate Collection (tc, tc/basset recorder, tc/Bass racket, tl, tc/Tenor crumhorn); The Royal Academy of Music (tl/lute); Musee du Louvre, Paris (cr). Dreamstime.com: Anthony Baggett (cl); Susico (bc). 314 Dorling Kindersley: National Maritime Museum, London (cr/longship, cr, fclb, clb). 315 Dorling Kindersley: Natural History Museum, London (cra/drawing, cra); National Maritıme Museum, London (ftl, tl, tc, cla, cla/
Telescope, fcra, fcr, br); The Science Museum, London (ca/ meter panel); The Royal Geographical Society, London (crb) Royal Geographical Society, London (fcrb). 316 Dorling Kindersley: Canterbury City Council, Museums and Galleries (ca); Maidstone Museum and Bentliff Art Gallery (tc); Stephen Oliver (br). Dreamstime.com: Ismael Tato Rodriguez (cl). 317 Alamy Images: D. Hurst (cla). Dreamstime.com: Piet Dorling Kindersley: US Army Heritage and Education Center

Military History Institute (fclb, br/revolver); Civil War Library and Museum, Philadelphia (c/Union Infantryman); Gettysburg Association (c/canteen ch/Knife and fork, fcrb, br): C. Pau Loane Collection (crb). 321 Dorling Kindersley: Gettysburg National Military Park, PA (crb, bc, bc/Spencer Carbine); Southern Skirmish Association (fcl, cl, fcl/Rope, cl/Cap). 322 Alamy Images: D. Hurst (cl). Dorling Kindersley: National Maritime Museum, London (fcla). Dreamstime.com: Hecke01 clb). 326 Dorling Kindersley: The National Railway Museum York / Science Museum Group (bl); The Science Museum oondon (br). Dreamstime.com: Timothy Large (cr). 327 Dorling Kindersley: Norfolk Rural Life Museum and Union Farm (bl) The Science Museum, London (fcra, cra, fcrb, cb, br, fbr) Whipple Museum of History of Science, Cambridge (cr); Maidstone Museum and Bentliff Art Gallery (crb); Museum of English Rural Life, The University of Reading (clb/Seed Drill). Dreamstime.com: Graham White (tr). 328 Dorling Kindersley: Royal Green Jackets Museum, Winchester (cla); Jean-Pierr Verney (cl, fcrb); Imperial War Museum, London (clb); Johr Pearce (crb). 329 Dorling Kindersley: Board of Trustees of the Royal Armouries (cl); Fleet Air Arm Museum (tc, ca); Imperial War Museum, London (ca/British Mark V Tank, c, clb); Jean-Pierre Verney (cla, cla/helmet and goggles, tr, ftr, fcra, cr/Italy, fcr, fcl, ca/French 'Hairbrush' grenade, ca/hand grenades, ca/Rod club nail, clb/Carcano, bl, fcrb, c/Beretta automatic pistol); Jean-Pierre Verney Collection (cra); Birmingham Pals (clb/Lee Enfield rifle); Imperial War Museum (c/German gas shell); The Tank Museum (cb, cr, br, cb/Luger pistol); The Combined Military Services Museum (CMSM) c/Glisenti Pistol). 330 Dorling Kindersley: Royal Airforce Museum, London (Hendon) (cr, cr/Messerschmitt Bf 110, c/ Supermarine Spitfire Mk24); The Wardrobe Museum, Salisbury (tl); Eden Camp Museum, Yorkshire (tr); Keith Warrington, Sutton Coldfield Model Makers Society (c); Musee de l'Air et de 'Espace / Le Bourget (fcr); Gatwick Aviation Museum (cr/Bell P-39-D Airacobra, cb/German Heinkel HE 111, crb/Handley Page Halifax II); The Combined Military Services Museum CMSM) (cb, fcrb, cb/Vickers Mark IV machine gun); Fort Nelson (crb). 331 Dorling Kindersley: RAF Museum, Cosford (tc); The Wardrobe Museum, Salisbury (tl, cla); Bradbury Science Museum, Los Alamos (tr); Gatwick Aviation Museum ($f t l$); Royal Armouries (cr); The Tank Museum (c, c/M2 Half Track, cl, cr/Churchill tank, clb, clb/Panzerkampfwagen II, clb/ Panzerkampfwagen III, cb/Ps Kpfw VI Ausf B Tiger III; Fleet Air Arm Museum (cb, cb/HMS Agincourt, bc, br, bc/USS); Scale Model World (crb, bl). 332 Dorling Kindersley: Fleet Air Arm Museum (cra). 333 Dorling Kindersley: Board of Trustees of the Royal Armouries (cb/M16); Ukraine State Aviation Museum (ca); Flugausstellung (c); Tim Parker (cb); Ministry of Defense Pattern Room, Nottingham (cb/jacket); Vietnam Rolling Thunder (clb, cb/tunic, cb/trousers, bc). NASA: (tc). 334 Alamy mages: Andrew Twort (cr). Dorling Kindersley: H Keith Melton Collection (fcl, c, cr/Mezon, fcr, clb, bl, bc/M-94, crb, br/ Handkerchief, br/letter removal device); Imperial War Museum London (bc, cb/Morse code key, fbr). Dreamstime.com: Kittiwut Ittikunlasate (cb). The Library of Congress, Washington DC: tc). 335 Dorling Kindersley: H Keith Melton Collection (ca/coin cra, fcl, cl, c, c/sleeve gun, fclb, cb, cb/Tear gas pen, crb, fbl, bl, bc/Surreptitious entry kit, cla): RAF Museum, Hendon (ca) Imperial War Museum, London (bc). 336 Dorling Kindersley: University of Pennsylvania Museum of Archaeology and
Anthropology (br) 337 Dorling Kindersley. Natural Hist Anthropology (br). 337 Dorling Kindersley: Natural History Museum, London (br). Dreamstime.com: Jeff Grabert / Jgrabert (bc). 338 Dorling Kindersley: Forrest L. Mitchell / James Laswel (bl); Egyptian Museum, Cairo (bc); Jerry Young (br). 339 Dorling Kindersley: Natural History Museum, London (br); Paul Rackham (fbl); Linda Pitkin (fbr). 340 Dorling Kindersley: Twan Leenders (fbl); The Shuttleworth Collection (fbr). 341 Dorling Kindersley: The Natural History Museum, London (fbl): Scanrail (bl). 342 Dreamstime.com: Andylid. 343 Dreamstime.com: The Natural History Museum, London (br). 345 Dorling Kindersley: The Natural History Museum, London (fbl); Jari Peltomaki (bc); Motorcycle Heritage Museum, Westerville, Ohio (fbr). 346 Dorling Kindersley: University of Pennsylvania Museum of Archaeology and Anthropology (fbr) Fotolia: Jan Will (bc). 347 Dorling Kindersley: Linda Pitkin (br). 348 Dorling Kindersley: Linda Pitkin (bc/lobster); Stephen Oliver (bc). 349 Alamy Images: Paul Fleet (fbr). Dreamstime com: Vtupinamba (br). 351 Dorling Kindersley: Durham University Oriental Museum (bc, bc/Hilt). 352 Dorling Kindersley: The Natural History Museum, London (bc); The Real Aeroplane Company (fbl). Dreamstime.com: Karam Mir (br). 353 Dorling Kindersley: Durham University Oriental Museum (bl). 354 Dorling Kindersley: Greg and Yvonne Dean (br). NASA: Boris Rabin (bc). 355 Dorling Kindersley: Durham University Oriental Museum (bc/gold amulet). Fotolia: Eric Isselee (bc, fbr). Getty Images: felipedupouy.com / Photodisc (br). 356 Dorling Kindersley: Brooklands Museum (fbr); Natural History Museum, London (bl). 357 Dreamstime.com: Kamnuan Suthongsa (br). NASA: (fbr)

All other images © Dorling Kindersley
For further information see:
www.dkimages.com

[^0]:

